Abstract
For ill-conditioned least squares problems, regularization techniques such as Tikhonov regularization are the key ingredients to obtain meaningful solutions, and the determination of the proper regularization parameter is the most difficult step. This paper focuses on the choice of regularization parameter on a quantum computer. We combine the classical L-curve or Hanke–Raus rule with the HHL algorithm and quantum amplitude estimation that compute the regularized solution and the corresponding residual and their norms. When a series of regularization parameters are tested, we then apply Grover’s search algorithm to find the best one that gives the meaningful solution. This yields a quadratic speedup in the number of regularization parameters.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Actually \(\tau =C\), since if \(\mu \) is small, then \(C=\tilde{\sigma }_{\min }/\sigma _{\max } =\sqrt{\sigma _{\min }^2+\mu ^2}/\sigma _{\max } \le 1\) generally.
The linear system \(Ax=b\) arises from the example Shaw in the regularization tools [31], where the matrix A is of order 1000 and right-hand size b has a noise level \(10^{-2}\). Each cross-marker corresponds to a certain \(\mu \).
References
Banks, H., Kunisch, K.: Parameter Estimation Techniques for Distributed Systems. Birkhäuser, Boston (1989)
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)
Hansen, P.C.: Discrete Inverse Problems, Insight and Applications. SIAM, Philadelphia (2010)
Tikhonov, A., Arsenin, V.: Solutions of Ill-Posed Problems. Wiley, New York (1977)
Haykin, S.O.: Neural Networks and Learning Machine, 3rd edn. Pearson, London (2008)
Xiang, H., Zou, J.: Randomized algorithms for large-scale inverse problems with general Tikhonov regularizations. Inverse Prob. 31, 085008 (2015)
Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)
Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)
Hanke, M., Raus, T.: A general heuristic for choosing the regularization parameter in ill-posed problems. SIAM J. Sci. Comput. 17, 956–972 (1996)
Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)
Xiang, H., Zou, J.: Regularization with randomized SVD for large-scale discrete inverse problems. Inverse Probl. 29, 085008 (2013)
Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for solving linear systems of equations. Phys. Rev. Lett. 15(103), 150502 (2009)
Brassard, G., Høyer, P., Mosca, M.: Quantum amplitude amplification and estimation. Quantum Comput. Quantum Inf. 305, 53–74 (2002)
Dürr, D., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1996)
Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012)
Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94, 022342 (2016)
Chakraborty, S., Gilyén, A., Jeffery, S.: The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. in: Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), pp. 33:1–33:14 (2019)
Kerenidis, I., Prakash, A.: Quantum gradient descent for linear systems and least squares. arXiv:1704.04992v3 (2017)
Wang, G.M.: Quantum algorithm for linear regression. Phys. Rev. A 96, 012335 (2017)
Liu, Y., Zhang, S.Y.: Fast quantum algorithms for least squares regression and statistic leverage scores. Theoret. Comput. Sci. 657, 38–47 (2017)
Li, G.X., Wang, Y.L., Luo, Y., Feng, Y.: Quantum data fitting algorithm for non-sparse matrices. arXiv:1907.06949 (2019)
Yu, C.H., Gao, F., Wen, Q.Y: An improved quantum algorithm for ridge regression. arXiv:1707.09524 (2017)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Rieffel, E., Polak, W.: Quantum Computing—A Gentle Introduction. The MIT Press, Cambridge (2011)
Wossnig, L., Zhao, Z.K., Prakash, A.: A quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120, 050502 (2018)
Childs, A.M., Kothari, R., Somma, R.D.: Quantum linear systems algorithm with exponentially improved dependence on precision. SIAM J. Comput. 46, 1920–1950 (2017)
Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110, 250504 (2013)
Shao, C., Xiang, H.: Quantum circulant preconditioner for a linear system of equations. Phys. Rev. A 98, 062321 (2018)
Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)
Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. arXiv:1711.10980 (2017)
Hansen, P.C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 6, 1–15 (1994)
Gross, D., Liu, Y.K., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography visa compressed sensing. Phys. Rev. Lett. 105, 150401 (2010)
Shabani, A., Kosut, R.L., Mohseni, M., Rabitz, H., Broome, M.A., Almeida, M.P., Fedrizzi, A., White, A.G.: Efficient measurement of quantum dynamics visa compressive sensing. Phys. Rev. Lett. 106, 100401 (2011)
Shabani, A., Mohseni, M., Lloyd, S., Kosut, R.L., Rabitz, H.: Estimation of many-body quantum Hamiltonians visa compressive sensing. Phys. Rev. A 84, 012107 (2011)
Acknowledgements
HX is supported by the Natural Science Foundation of China under Grants 11571265 and NSFC-RGC No. 11661161017. CS was supported by the QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union’s Horizon 2020 Programme (QuantAlgo Project), and EPSRC Grants EP/L021005/1 and EP/R043957/1. No new data were created during this study.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: The procedure of HHL algorithm to generate state (12)
Suppose the SVD of \({\widetilde{A}}_\mu =\sum _j \tilde{\sigma }_j|\tilde{u}_j\rangle \langle \tilde{u}_j|\), and the smallest nonzero singular value is represented by \(\tilde{\sigma }_{\min }\). We formally decompose \(|\tilde{b}\rangle =\sum _j \tilde{\beta }_j |\tilde{u}_j\rangle \). Then by QPE, we obtain
Denote \({\widetilde{C}}\) as a lower bound of \(\sigma _{\min }\), and define \(f(z) = \arccos ({\widetilde{C}}/z)\), then apply \(U_f\) to the above state to get
Now use control rotation to generate
At last, undo \(U_f\) and QPE, then we have
Appendix B: Multiply A on state (12)
Denote the SVD of \(A=\sum _j \sigma _j |u_j\rangle \langle v_j|\), then the eigenvalue decomposition of \({\widetilde{A}} = \left( \begin{array}{c@{\quad }c} 0 &{} A \\ A^\dag &{} 0 \\ \end{array} \right) \) is \(\sum _j \pm \sigma _j |w_j^\pm \rangle \langle w_j^{\pm }|\), where \(|w_j^\pm \rangle = \frac{1}{\sqrt{2}}(|0\rangle |u_j\rangle \pm |1\rangle |v_j\rangle )\).
Formally, we can rewrite \(|1,x_\mu \rangle = \sum _j x_{\mu ,j}|1,v_j\rangle = \sum _j \frac{x_{\mu ,j} }{\sqrt{2}}(|w_j^+\rangle -|w_j^-\rangle )\). Then
By viewing \(|0\rangle \) in the third register as control qubit, we perform QPE to \(\hbox {e}^{\mathbf{i}t_0 {\widetilde{A}}}\) with initial state \(|1,X_\mu \rangle \), then we obtain
Denote \(f(z) = \arccos (z/{\widehat{C}})\), where \({\widehat{C}}\) is a upper bound of \(\sigma _{\max }\). Apply \(U_f\) to the above state to prepare
Now apply control rotation to generate
Finally, undo \(U_f\) and QPE we obtain
Therefore, there is a unitary that maps \(|1,X_\mu \rangle \) to state (22). The first qubit \(|0\rangle \) is ancillary.
Rights and permissions
About this article
Cite this article
Shao, C., Xiang, H. Quantum regularized least squares solver with parameter estimate. Quantum Inf Process 19, 113 (2020). https://doi.org/10.1007/s11128-020-2615-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-2615-9