[go: up one dir, main page]

Skip to main content
Log in

Classical benchmarking of Gaussian Boson Sampling on the Titan supercomputer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Gaussian Boson Sampling (GBS) is a model of photonic quantum computing where single-mode squeezed states are sent through linear-optical interferometers and measured using single-photon detectors. In this work, we employ a recent exact sampling algorithm for GBS with threshold detectors to perform classical simulations on the Titan supercomputer. We determine the time and memory resources as well as the amount of computational nodes required to produce samples for different numbers of modes and detector clicks. It is possible to simulate a system with 800 optical modes postselected on outputs with 20 detector clicks, producing a single sample in roughly 2 h using 40% of the available nodes of Titan. Additionally, we benchmark the performance of GBS when applied to dense subgraph identification, even in the presence of photon loss. We perform sampling for several graphs containing as many as 200 vertices. Our findings indicate that large losses can be tolerated and that the use of threshold detectors is preferable over using photon-number-resolving detectors postselected on collision-free outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  2. Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203 (2017)

    Article  ADS  Google Scholar 

  3. Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits (2017). arXiv:1710.05867

  4. Chen, Z.-Y., Zhou, Q., Xue, C., Yang, X., Guo, G.-C., Guo, G.-P.: 64-qubit quantum circuit simulation. Sci. Bull. (2018). https://doi.org/10.1016/j.scib.2018.06.007

    Article  Google Scholar 

  5. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 38, 848–859 (2018)

    Article  Google Scholar 

  6. Biamonte, J.D., Morales, M.E., Koh, D.E.: Quantum supremacy lower bounds by entanglement scaling (2018). arXiv:1808.00460

  7. Chen, J., Zhang, F., Chen, M., Huang, C., Newman, M., Shi, Y.: Classical simulation of intermediate-size quantum circuits (2018). arXiv:1805.01450

  8. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the forty-third annual ACM symposium on theory of computing. pp 333–342, ACM (2011)

  9. Spring, J.B., Metcalf, B.J., Humphreys, P.C., Kolthammer, W.S., Jin, X.-M., Barbieri, M., Datta, A., Thomas-Peter, N., Langford, N.K., Kundys, D., et al.: Boson sampling on a photonic chip. Science (2012). https://doi.org/10.1126/science.1231692

    Article  Google Scholar 

  10. Broome, M.A., Fedrizzi, A., Rahimi-Keshari, S., Dove, J., Aaronson, S., Ralph, T.C., White, A.G.: Photonic boson sampling in a tunable circuit. Science 339(6121), 794–798 (2013)

    Article  ADS  Google Scholar 

  11. Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Experimental boson sampling. Nat. Photon. 7(7), 540 (2013)

    Article  ADS  Google Scholar 

  12. Aaronson, S., Arkhipov, A.: Bosonsampling is far from uniform (2013). arXiv:1309.7460

  13. Lund, A., Laing, A., Rahimi-Keshari, S., Rudolph, T., O’Brien, J.L., Ralph, T.: Boson sampling from a Gaussian state. Phys. Rev. Lett. 113(10), 100502 (2014)

    Article  ADS  Google Scholar 

  14. Bentivegna, M., Spagnolo, N., Vitelli, C., Flamini, F., Viggianiello, N., Latmiral, L., Mataloni, P., Brod, D.J., Galvão, E.F., Crespi, A., et al.: Experimental scattershot boson sampling. Sci. Adv. 1(3), e1400255 (2015)

    Article  ADS  Google Scholar 

  15. Latmiral, L., Spagnolo, N., Sciarrino, F.: Towards quantum supremacy with lossy scattershot boson sampling. New J. Phys. 18(11), 113008 (2016)

    Article  ADS  Google Scholar 

  16. Hamilton, C.S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: Gaussian boson sampling. Phys. Rev. Lett. 119(17), 170501 (2017)

    Article  ADS  Google Scholar 

  17. Kruse, R., Hamilton, C.S., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: A detailed study of Gaussian boson sampling (2018). arXiv:1801.07488

  18. Huh, J., Guerreschi, G.G., Peropadre, B., McClean, J.R., Aspuru-Guzik, A.: Boson sampling for molecular vibronic spectra. Nat. Photon. 9(9), 615 (2015)

    Article  ADS  Google Scholar 

  19. Clements, W.R., Renema, J.J., Eckstein, A., Valido, A.A., Lita, A., Gerrits, T., Nam, S.W., Kolthammer, W.S., Huh, J., Walmsley, I.A.: Experimental quantum optical approximation of vibronic spectroscopy (2017). arXiv:1710.08655

  20. Sparrow, C., Martín-López, E., Maraviglia, N., Neville, A., Harrold, C., Carolan, J., Joglekar, Y.N., Hashimoto, T., Matsuda, N., O’Brien, J.L., et al.: Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557(7707), 660 (2018)

    Article  ADS  Google Scholar 

  21. Arrazola, J.M., Bromley, T.R.: Using gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 121, 030503 (2018)

    Article  ADS  Google Scholar 

  22. Arrazola, J.M., Bromley, T.R., Rebentrost, P.: Quantum approximate optimization with Gaussian boson sampling. Phys. Rev. A 98, 012322 (2018)

    Article  ADS  Google Scholar 

  23. Brádler, K., Dallaire-Demers, P.-L., Rebentrost, P., Su, D., Weedbrook, C.: Gaussian boson sampling for perfect matchings of arbitrary graphs (2017). arXiv:1712.06729

  24. Neville, A., Sparrow, C., Clifford, R., Johnston, E., Birchall, P.M., Montanaro, A., Laing, A.: Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13(12), 1153 (2017)

    Article  Google Scholar 

  25. Clifford, P., Clifford, R.: The classical complexity of boson sampling. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp 146–155 (2018)

  26. Quesada, N., Arrazola, J.M., Killoran, N.: Gaussian boson sampling using threshold detectors (2018). arXiv:1807.01639

  27. Johnson, D.S., Trick, M.A.: Cliques, coloring, and satisfiability: second DIMACS implementation challenge, October 11–13, 1993. American Mathematical Society (1996)

  28. Oak Ridge National Laboratory. https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/. Accessed 2018

  29. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MathSciNet  Google Scholar 

  30. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for emerging cyber-communities. Comput. Netw. 31(11–16), 1481–1493 (1999)

    Article  Google Scholar 

  31. Angel, A., Sarkas, N., Koudas, N., Srivastava, D.: Dense subgraph maintenance under streaming edge weight updates for real-time story identification. Proc. VLDB Endowm. 5(6), 574–585 (2012)

    Article  Google Scholar 

  32. Beutel, A., Xu, W., Guruswami, V., Palow, C., Faloutsos, C.: Copycatch: stopping group attacks by spotting lockstep behavior in social networks. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 119–130, ACM. New York (2013)

  33. Chen, J., Saad, Y.: Dense subgraph extraction with application to community detection. IEEE Trans. Knowl. Data Eng. 24(7), 1216–1230 (2012)

    Article  Google Scholar 

  34. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: Motifcut: regulatory motifs finding with maximum density subgraphs. Bioinformatics 22(14), e150–e157 (2006)

    Article  Google Scholar 

  35. Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense subgraphs with restrictions and applications to gene annotation graphs. In: Annual International Conference on Research in Computational Molecular Biology, pp. 456–472. Springer, Berlin (2010)

  36. Arora, S., Barak, B., Brunnermeier, M., Ge, R.: Computational complexity and information asymmetry in financial products. Commun. ACM 54(5), 101–107 (2011)

    Article  Google Scholar 

  37. Wu, J., Liu, Y., Zhang, B., Jin, X., Wang, Y., Wang, H., Yang, X.: Computing permanents for boson sampling on tianhe-2 supercomputer (2016). arXiv preprint arXiv:1606.05836

  38. Björklund, A., Gupt, B., Quesada, N.: A faster Hafnian formula for complex matrices and its benchmarking on the titan supercomputer (2018). arXiv:1805.12498

  39. Gupt, B.: Torontonian sampling code (2018). https://github.com/XanaduAI/torontonian-sampling

Download references

Acknowledgements

The authors thank Nathan Killoran, Joshua Izaac, Patrick Rebentrost, and Christian Weedbrook for useful discussions and valuable feedback. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Quesada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupt, B., Arrazola, J.M., Quesada, N. et al. Classical benchmarking of Gaussian Boson Sampling on the Titan supercomputer. Quantum Inf Process 19, 249 (2020). https://doi.org/10.1007/s11128-020-02713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02713-6

Keywords

Navigation