Abstract
Gaussian Boson Sampling (GBS) is a model of photonic quantum computing where single-mode squeezed states are sent through linear-optical interferometers and measured using single-photon detectors. In this work, we employ a recent exact sampling algorithm for GBS with threshold detectors to perform classical simulations on the Titan supercomputer. We determine the time and memory resources as well as the amount of computational nodes required to produce samples for different numbers of modes and detector clicks. It is possible to simulate a system with 800 optical modes postselected on outputs with 20 detector clicks, producing a single sample in roughly 2 h using 40% of the available nodes of Titan. Additionally, we benchmark the performance of GBS when applied to dense subgraph identification, even in the presence of photon loss. We perform sampling for several graphs containing as many as 200 vertices. Our findings indicate that large losses can be tolerated and that the use of threshold detectors is preferable over using photon-number-resolving detectors postselected on collision-free outputs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
Harrow, A.W., Montanaro, A.: Quantum computational supremacy. Nature 549(7671), 203 (2017)
Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits (2017). arXiv:1710.05867
Chen, Z.-Y., Zhou, Q., Xue, C., Yang, X., Guo, G.-C., Guo, G.-P.: 64-qubit quantum circuit simulation. Sci. Bull. (2018). https://doi.org/10.1016/j.scib.2018.06.007
Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 38, 848–859 (2018)
Biamonte, J.D., Morales, M.E., Koh, D.E.: Quantum supremacy lower bounds by entanglement scaling (2018). arXiv:1808.00460
Chen, J., Zhang, F., Chen, M., Huang, C., Newman, M., Shi, Y.: Classical simulation of intermediate-size quantum circuits (2018). arXiv:1805.01450
Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the forty-third annual ACM symposium on theory of computing. pp 333–342, ACM (2011)
Spring, J.B., Metcalf, B.J., Humphreys, P.C., Kolthammer, W.S., Jin, X.-M., Barbieri, M., Datta, A., Thomas-Peter, N., Langford, N.K., Kundys, D., et al.: Boson sampling on a photonic chip. Science (2012). https://doi.org/10.1126/science.1231692
Broome, M.A., Fedrizzi, A., Rahimi-Keshari, S., Dove, J., Aaronson, S., Ralph, T.C., White, A.G.: Photonic boson sampling in a tunable circuit. Science 339(6121), 794–798 (2013)
Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Experimental boson sampling. Nat. Photon. 7(7), 540 (2013)
Aaronson, S., Arkhipov, A.: Bosonsampling is far from uniform (2013). arXiv:1309.7460
Lund, A., Laing, A., Rahimi-Keshari, S., Rudolph, T., O’Brien, J.L., Ralph, T.: Boson sampling from a Gaussian state. Phys. Rev. Lett. 113(10), 100502 (2014)
Bentivegna, M., Spagnolo, N., Vitelli, C., Flamini, F., Viggianiello, N., Latmiral, L., Mataloni, P., Brod, D.J., Galvão, E.F., Crespi, A., et al.: Experimental scattershot boson sampling. Sci. Adv. 1(3), e1400255 (2015)
Latmiral, L., Spagnolo, N., Sciarrino, F.: Towards quantum supremacy with lossy scattershot boson sampling. New J. Phys. 18(11), 113008 (2016)
Hamilton, C.S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: Gaussian boson sampling. Phys. Rev. Lett. 119(17), 170501 (2017)
Kruse, R., Hamilton, C.S., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.: A detailed study of Gaussian boson sampling (2018). arXiv:1801.07488
Huh, J., Guerreschi, G.G., Peropadre, B., McClean, J.R., Aspuru-Guzik, A.: Boson sampling for molecular vibronic spectra. Nat. Photon. 9(9), 615 (2015)
Clements, W.R., Renema, J.J., Eckstein, A., Valido, A.A., Lita, A., Gerrits, T., Nam, S.W., Kolthammer, W.S., Huh, J., Walmsley, I.A.: Experimental quantum optical approximation of vibronic spectroscopy (2017). arXiv:1710.08655
Sparrow, C., Martín-López, E., Maraviglia, N., Neville, A., Harrold, C., Carolan, J., Joglekar, Y.N., Hashimoto, T., Matsuda, N., O’Brien, J.L., et al.: Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557(7707), 660 (2018)
Arrazola, J.M., Bromley, T.R.: Using gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 121, 030503 (2018)
Arrazola, J.M., Bromley, T.R., Rebentrost, P.: Quantum approximate optimization with Gaussian boson sampling. Phys. Rev. A 98, 012322 (2018)
Brádler, K., Dallaire-Demers, P.-L., Rebentrost, P., Su, D., Weedbrook, C.: Gaussian boson sampling for perfect matchings of arbitrary graphs (2017). arXiv:1712.06729
Neville, A., Sparrow, C., Clifford, R., Johnston, E., Birchall, P.M., Montanaro, A., Laing, A.: Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13(12), 1153 (2017)
Clifford, P., Clifford, R.: The classical complexity of boson sampling. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp 146–155 (2018)
Quesada, N., Arrazola, J.M., Killoran, N.: Gaussian boson sampling using threshold detectors (2018). arXiv:1807.01639
Johnson, D.S., Trick, M.A.: Cliques, coloring, and satisfiability: second DIMACS implementation challenge, October 11–13, 1993. American Mathematical Society (1996)
Oak Ridge National Laboratory. https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/. Accessed 2018
Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)
Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for emerging cyber-communities. Comput. Netw. 31(11–16), 1481–1493 (1999)
Angel, A., Sarkas, N., Koudas, N., Srivastava, D.: Dense subgraph maintenance under streaming edge weight updates for real-time story identification. Proc. VLDB Endowm. 5(6), 574–585 (2012)
Beutel, A., Xu, W., Guruswami, V., Palow, C., Faloutsos, C.: Copycatch: stopping group attacks by spotting lockstep behavior in social networks. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 119–130, ACM. New York (2013)
Chen, J., Saad, Y.: Dense subgraph extraction with application to community detection. IEEE Trans. Knowl. Data Eng. 24(7), 1216–1230 (2012)
Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: Motifcut: regulatory motifs finding with maximum density subgraphs. Bioinformatics 22(14), e150–e157 (2006)
Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense subgraphs with restrictions and applications to gene annotation graphs. In: Annual International Conference on Research in Computational Molecular Biology, pp. 456–472. Springer, Berlin (2010)
Arora, S., Barak, B., Brunnermeier, M., Ge, R.: Computational complexity and information asymmetry in financial products. Commun. ACM 54(5), 101–107 (2011)
Wu, J., Liu, Y., Zhang, B., Jin, X., Wang, Y., Wang, H., Yang, X.: Computing permanents for boson sampling on tianhe-2 supercomputer (2016). arXiv preprint arXiv:1606.05836
Björklund, A., Gupt, B., Quesada, N.: A faster Hafnian formula for complex matrices and its benchmarking on the titan supercomputer (2018). arXiv:1805.12498
Gupt, B.: Torontonian sampling code (2018). https://github.com/XanaduAI/torontonian-sampling
Acknowledgements
The authors thank Nathan Killoran, Joshua Izaac, Patrick Rebentrost, and Christian Weedbrook for useful discussions and valuable feedback. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gupt, B., Arrazola, J.M., Quesada, N. et al. Classical benchmarking of Gaussian Boson Sampling on the Titan supercomputer. Quantum Inf Process 19, 249 (2020). https://doi.org/10.1007/s11128-020-02713-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02713-6