[go: up one dir, main page]

Skip to main content
Log in

Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

A Correction to this article was published on 19 March 2019

This article has been updated

Abstract

Quantum communication is a secure way to transfer quantum information and to communicate with legitimate parties over distant places in a network. Although communication over a long distance has already been attained, technical problem arises due to unavoidable loss of information through the transmission channel. Quantum repeaters can extend the distance scale using entanglement swapping and purification scheme. Here we demonstrate the working of a quantum repeater by the above two processes. We use IBM’s real quantum processor ‘ibmqx4’ to create two pair of entangled qubits and design an equivalent quantum circuit which consequently swaps the entanglement between the two pairs. We then develop a novel purification protocol which enhances the degree of entanglement in a noisy channel that includes combined errors of bit-flip, phase-flip and phase-change error. We perform quantum state tomography to verify the entanglement swapping between the two pairs of qubits and working of the purification protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

  • 19 March 2019

    The article Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer, written by Bikash K. Behera, Swarnadeep Seth, Antariksha Das, Prasanta K. Panigrahi, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 1 March 2019 with open access.

References

  1. Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  2. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  3. Song, S., Wang, C.: Recent development in quantum communication. Chin. Sci. Bull. 57, 4694–4700 (2012)

    Article  Google Scholar 

  4. Orieux, A., Diamanti, E.: Recent advances on integrated quantum communications. J. Opt. 18, 083002 (2016)

    Article  ADS  Google Scholar 

  5. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  6. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  7. Peng, C.-Z., et al.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007)

    Article  ADS  Google Scholar 

  8. Rosenberg, D., et al.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  9. Schmitt-Manderbach, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  10. Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J., Pan, J.-W.: Robust long-distance quantum communication with atomic ensembles and linear optics. Phys. Rev. Lett. 98, 240502 (2007)

    Article  ADS  Google Scholar 

  11. Ursin, R., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)

    Article  Google Scholar 

  12. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Simon, C., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  14. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014)

    Article  ADS  Google Scholar 

  15. Elliott, C.: Building the quantum network. New J. Phys. 4, 46 (2002)

    Article  ADS  Google Scholar 

  16. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  17. Tang, J.-S., Zhou, Z.-Q., Li, C.-F.: Towards a quantum network. Nat. Sci. Rev. 4, 168–169 (2017)

    Article  Google Scholar 

  18. Matsuoka, F., Tomita, A., Okamoto, A.: Entanglement generation by communication using phase-squeezed light with photon loss. Phys. Rev. A 93, 032308 (2016)

    Article  ADS  Google Scholar 

  19. Aspelmeyer, M., et al.: Long-distance free-space distribution of entangled photons. Science 301, 621–623 (2003)

    Article  ADS  Google Scholar 

  20. Aspelmeyer, K.J., et al.: Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202–209 (2005)

    Article  Google Scholar 

  21. Peng, C.-Z., et al.: Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. Phys. Rev. Lett. 94, 150501 (2005)

    Article  ADS  Google Scholar 

  22. Das, S., Khatri, S., Dowling, J.P.: Robust quantum network architectures and topologies for entanglement distribution. Phys. Rev. A 97, 012335 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2016)

    Article  ADS  Google Scholar 

  24. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 73, 3081–3084 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  26. Riebe, M., et al.: Experimental quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  27. Barrett, M.D., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–73 (2004)

    Article  ADS  Google Scholar 

  28. Ursin, R., et al.: Quantum teleportation link across the Danube. Nature 430, 849 (2004)

    Article  ADS  Google Scholar 

  29. Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1991)

    Article  ADS  Google Scholar 

  30. Dür, W., Briegel, H.-J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169 (1999)

    Article  ADS  Google Scholar 

  31. Loock, P.V., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)

    Article  Google Scholar 

  32. Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Meter, R.V., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)

    Article  ADS  Google Scholar 

  33. Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., Meter, R.V., Hollenberg, L.C.L.: Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010)

    Article  ADS  Google Scholar 

  34. Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777 (2012)

    Article  ADS  Google Scholar 

  35. Chou, C.-W., et al.: Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1318 (2007)

    Article  ADS  Google Scholar 

  36. Pan, J.-W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  37. Riebe, M., Monz, T., Kim, K., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Deterministic entanglement swapping with an ion-trap quantum computer. Nat. Phys. 4, 839–842 (2008)

    Article  Google Scholar 

  38. Xiong, W., Ye, L.: Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 28, 2030 (2011)

    Article  ADS  Google Scholar 

  39. Sheng, Y.B., Deng, F.G., Zhou, Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  40. Wang, H.F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)

    Article  ADS  Google Scholar 

  41. Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)

    Article  ADS  Google Scholar 

  42. Munro, W.J., Harrison, K.A., Stephens, A.M., Devitt, S.J., Nemoto, K.: From quantum multiplexing to high-performance quantum networking. Nat. Photon. 4, 792–796 (2010)

    Article  ADS  Google Scholar 

  43. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)

    Article  ADS  Google Scholar 

  44. Muralidharan, S., Li, L., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016)

    Article  ADS  Google Scholar 

  45. Chen, Z.-B., Zhao, B., Chen, Y.-A., Schmiedmayer, J., Pan, J.-W.: Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007)

    Article  ADS  Google Scholar 

  46. Sangouard, N., et al.: Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 062301 (2008)

    Article  ADS  Google Scholar 

  47. Trugenberger, C.A.: Probabilistic quantum memories. Phys. Rev. Lett. 87, 067901 (2001)

    Article  ADS  Google Scholar 

  48. Gouët, J.-L.L., Moiseev, S.: Quantum memory. J. Phys. B At. Mol. Opt. Phys. 45, 120201 (2012)

    Article  Google Scholar 

  49. Yuan, Z.-S., Chen, Y.-A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.-W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)

    Article  ADS  Google Scholar 

  50. IBM Quantum Experience. http://research.ibm.com/ibm-q/

  51. Hegade, N.N., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of Quantum Tunneling in IBM Quantum Computer. arXiv preprint arXiv:1712.07326 (2017)

  52. Majumder, A., Mohapatra, S., Kumar, A.: Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. arXiv preprint arXiv:1707.07460 (2017)

  53. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportion of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)

    Article  ADS  Google Scholar 

  54. Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: A Verification Algorithm and Its Application to Quantum Locker in IBM Quantum Computer. arXiv preprint arXiv:1710.05196 (2017)

  55. Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)

    Article  ADS  Google Scholar 

  56. Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)

    Article  ADS  Google Scholar 

  57. Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2016)

    Article  Google Scholar 

  58. Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)

    Article  ADS  Google Scholar 

  59. Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  60. García-Martín, D., Sierra, G.: Five Experimental Tests on the 5-Qubit IBM Quantum Computer. arXiv preprint arXiv:1712.05642 (2017)

  61. Das, S., Paul, G.: Experimental test of Hardy’s paradox on a five-qubit quantum computer. arXiv preprint arXiv:1712.04925 (2017)

  62. Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  63. Yalçinkaya, İ., Gedik, Z.: Optimization and experimental realization of quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)

    Article  ADS  Google Scholar 

  64. Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  65. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)

    Article  ADS  Google Scholar 

  66. Gangopadhyay, S., Manabputra Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  67. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum Artificial Life in an IBM Quantum Computer. arXiv preprint arXiv:1711.09442 (2017). Saipriya Satyajit, Karthik Srinivasan,

  68. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL 119, 60002 (2017)

    Article  ADS  Google Scholar 

  69. Sisodia, M., et al.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860–3874 (2017)

    Article  ADS  Google Scholar 

  70. Devoret, M.H., Scholekopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013)

    Article  ADS  Google Scholar 

  71. Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B At. Mol. Opt. Phys. 43, 095508 (2007)

    Article  Google Scholar 

  72. Xin, T., et al.: Quantum state tomography via reduced density matrices. Phys, Rev. Lett. 118, 020401 (2008)

    Article  MathSciNet  Google Scholar 

  73. Cramer, M., et al.: Efficient quantum state tomography. Nat. Comm. 1, 1147 (2010)

    Article  Google Scholar 

  74. Wimberger, S.: Applications of fidelity measures to complex quantum systems. Philos. Trans. A Math. Phys. Eng. Sci. 13, 20150153 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

B.K.B., S.S. and A.D. are financially supported by DST Inspire Fellowship. We are extremely grateful to IBM team and IBM Quantum Experience project. The discussions and opinions developed in this paper are only those of the authors and do not reflect the opinions of IBM or IBM QE team.

Author information

Authors and Affiliations

Authors

Contributions

BKB has developed the quantum circuits and guided SS and AD to design the quantum circuits on the IBM’s quantum processor and perform the experiments. BKB, SS and AD have written the paper. AD has drawn all the figures in vector graphics format. BKB, SS and AD have completed the project under the guidance of PKP

Corresponding author

Correspondence to Prasanta K. Panigrahi.

Ethics declarations

Conflict of interest

The authors declare no competing financial as well as non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Due to the cancellation of a retrospective Open Access order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, B.K., Seth, S., Das, A. et al. Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf Process 18, 108 (2019). https://doi.org/10.1007/s11128-019-2229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2229-2

Keywords

Navigation