Abstract
In this paper, some non-classical correlations are investigated for bipartite partitions of two qubits trapped in two spatially separated cavities connected by an optical fiber. The results show that the trace distance discord and Bell’s non-locality introduce other quantum correlations beyond the entanglement. Moreover, the correlation functions of the trace distance discord and the Bell’s non-locality are very sensitive to the initial correlations, the coupling strengths, and the dissipation rates of the cavities. The fluctuations of the correlation functions between their initial values and gained (loss) values appear due to the unitary evolution of the system. These fluctuations depend on the chosen initial correlations between the two subsystems. The maximal violations of Bell’s inequality occur when the logarithmic negativity and the trace distance discord reach certain values. It is shown that the robustness of the non-classical correlations, against the dissipation rates of the cavities, depends on the bipartite partitions reduced density matrices of the system, and is also greatly enhanced by choosing appropriate coupling strengths.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Vedral, V.: Quantum entanglement. Nat. Phys. 10, 256 (2014)
Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899–6905 (2001)
Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)
Huang, Z.M., Qiu, D.W.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979 (2016)
Luo, S., Fu, S.: Measurement-Induced Nonlocality. Phys. Rev. Lett. 106, 120401 (2011)
Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)
Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)
Paula, F.M., Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)
Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)
Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)
Nakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)
Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)
Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)
Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)
Huang, Z.M., Situ, H.Z.: Quantum coherence and correlation in spin models with Dzyaloshinskii–Moriya interaction. Int. J. Theor. Phys. 56, 2178 (2017)
Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction. Ann. Phys. 366, 32–44 (2016)
Mazzola, L., Bellomo, B., Lo-Franco, R., Compagno, G.: Connection among entanglement, mixedness, and nonlocality in a dynamical context. Phys. Rev. A 81, 052116 (2010)
Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double-quantum-dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)
Bell, J.S.: On the einstein podolsky rosen paradox. Physics 1, 195 (1964)
Acin, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)
Gisin, N., Thew, R.: Quantum communication. Nat. Photon 1, 165 (2007)
Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)
Paternostro, M., Kim, M.S., Palma, G.M.: Non-local quantum gates: a cavity-quantum-electrodynamics implementation. J. Mod. Opt. 50, 2075–2094 (2003)
Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242 (1997)
Clark, S., Peng, A., Gu, M., Parkins, S.: Unconditional preparation of entanglement between atoms in cascaded optical cavities. Phys. Rev. Lett. 91, 177901 (2003)
Duan, L.-M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)
Cho, J., Lee, H.-W.: Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95, 160501 (2005)
Serafini, A., Mancini, S., Bose, S.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. Lett. 96, 010503 (2006)
Mohamed, A.-B.A., Hessian, H.A., Hashem, M.: Effect of the phase damping of two qubits on both the quantum discord and non-local correlation. Optik 126, 3432–3436 (2015)
Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. 15, 4649 (2016)
Su, S.L., Shao, X.Q., Guo, Q., Cheng, L.Y., Wang, H.F., Zhang, S.: Preparation of entanglement between atoms in spatially separated cavities via fiber loss. Eur. Phys. J. D 69, 123 (2015)
Zheng, B., Shen, L.-T., Chen, M.-F.: Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities. Quantum Inf. Process. 15, 2181–2191 (2016)
Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)
Lettner, M., Mücke, M., Riedl, S., Vo, C., Hahn, C., Baur, S., Bochmann, J., Ritter, S., Dürr, S., Rempe, G.: Remote entanglement between a single atom and a Bose–Einstein condensate. Phys. Rev. Lett. 106, 210503 (2011)
Muller, A., Flagg, E.B., Metcalfe, M., Lawall, J., Solomon, G.S.: Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity. Appl. Phys. Lett. 95, 173101 (2009)
Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)
Di Fidio, C., Vogel, W., Khanbekyan, M., Welsch, D.-G.: Photon emission by an atom in a lossy cavity. Phys. Rev. A 77, 043822 (2008)
Man, Z.X., Xia, Y.J., An, N.B.: Quantum dissonance induced by a thermal field and its dynamics in dissipative systems. Eur. Phys. J. D 64, 521 (2011)
Torres, J.M.: Closed-form solution of Lindblad master equations without gain. Phys. Rev. A 89, 052133 (2014)
Mohamed, A.-B., Eleuch, H.: Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: entanglement and non-Gaussanity. Eur. Phys. J. D 69, 191 (2015)
Mohamed, A.-B., Eleuch, H.: Quantum correlation control for two semiconductor microcavities connected by an optical fiber. Phys. Scr. 92, 065101 (2017)
Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method. Eur. Phys. J. Plus 132, 531 (2017)
de Assis, R.J., Sales, J.S., de Almeida, N.G.: Unambiguous discrimination of nonorthogonal quantum states in cavity QED. Phys. Lett. A 381, 2927 (2017)
Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)
Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)
Metwally, N.: Single and double changes of entanglement. J. Opt. Soc. 31, 691 (2014)
Ann, K., Jaeger, G.: Finite-time destruction of entanglement and non-locality by environmental influences. Found Phys. 39, 790–828 (2009)
Ann, K., Jaeger, G.: Disentanglement and decoherence in two-spin and three-spin systems under dephasing. Phys. Rev. B 75, 115307 (2007)
Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)
Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–60 (2009)
Mohamed, A.-B.A.: Thermal effect on the generated quantum correlation between two superconducting qubits. Laser Phys. Lett. 13, 085202 (2016)
Acknowledgements
The author is very grateful to the referees and the associate editor for their important remarks which have helped him to improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mohamed, AB.A. Bipartite non-classical correlations for a lossy two connected qubit–cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf Process 17, 96 (2018). https://doi.org/10.1007/s11128-018-1865-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1865-2