Abstract
We investigate the average entropy of a subsystem within a global unitary orbit of a given mixed bipartite state in the finite-dimensional space. Without working out the closed-form expression of such average entropy for the mixed state case, we provide an analytical lower bound for this average entropy. In deriving this analytical lower bound, we get some useful by-products of independent interest. We also apply these results to estimate average correlation along a global unitary orbit of a given mixed bipartite state. When the notion of von Neumann entropy is replaced by linear entropy, the similar problem can be considered also, and moreover the exact average linear entropy formula is derived for a subsystem over a global unitary orbit of a mixed bipartite state.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bravyi, S.: Compatibility between local and multipartite states. Quantum Inf. Comput. 4(1), 012–026 (2004)
Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975). doi:10.1016/0024-3795(75)90075-0
Christandl, M., Doran, B., Kousidis, S., Walter, M.: Eigenvalue distributions of reduced density matrices. Commun. Math. Phys. 332, 1–52 (2014). doi:10.1007/s00220-014-2144-4
Collins, B.: Moments and cumulants of polynomial random variables on unitary groups, the Itzykson–Zuber integral, and free probability. Int. Math. Res. Not. 17, 953 (2003)
Collins, B., Śniady, P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264(3), 773–795 (2006). doi:10.1007/s00220-006-1554-3
Dyer, J.P.: Divergence of Lubkin’s series for a quantum subsystem’s mean entropy, arXiv:1406.5776
Foong, S.K., Kano, S.: Proof of Page’s conjecture on the average entropy of a subsystem. Phys. Rev. Lett. 72, 1148 (1994). doi:10.1103/PhysRevLett.72.1148
Gessner, M., Breuer, H.-P.: Generic features of the dynamics of complex open quantum systems: statistical approach based on averages over the unitary group. Phys. Rev. E 87, 042128 (2013). doi:10.1103/PhysRevE.87.042128
Giorda, P., Allegra, M.: Two-qubit correlations revisited: average mutual information, relevant (and useful) observables and an application to remote state preparation, arXiv: 1606.02197
Hiai, F., Petz, D.: Introduction to Matrix Analysis and Applications. Hindustan Book Agency, Springer, Switzerland (2014)
Jevtic, S., Jennings, D., Rudolph, T.: Maximally and minimally correlated states attainable within a closed evolving system. Phys. Rev. Lett. 108, 110403 (2012). doi:10.1103/PhysRevLett.108.110403
Jevtic, S., Jennings, D., Rudolph, T.: Quantum mutual information along unitary orbits. Phys. Rev. A 85, 052121 (2012). doi:10.1103/PhysRevA.85.052121
Klyachko, A.: Quantum marginal problem and \(N\)-representability. J. Phys. Conf. Ser. 36, 72–86 (2006)
Lachal, A.: Probabilistic approach to Page’s formula for the entropy of a quantum system. Stoch. Int. J. Probab. Stoch. Process. 78, 157–178 (2006)
Lubkin, E.: Entropy of an \(n\)-system from its correlation with a \(k\)-reservoir. J. Math. Phys. 19(5), 1028 (1978). doi:10.1063/1.523763
Modi, K., Gu, M.: Coherent and incoherent contents of correlations. Int. J. Mod. Phys. B 27, 1345027 (2012). doi:10.1142/S0217979213450276
Oszmaniec, M., Kuś, M.: Fraction of isospectral states exhibiting quantum correlations. Phys. Rev. A 90, 010302 (2014). doi:10.1103/PhysRevA.90.010302
Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993). doi:10.1103/PhysRevLett.71.1291
Sen, S.: Average entropy of a quantum subsystem. Phys. Rev. Lett. 77, 1 (1996). doi:10.1103/PhysRevLett.77.1
Sánchez-Ruiz, J.: Simple proof of Page’s conjecture on the average entropy of a subsystem. Phys. Rev. E 52, 5653 (1995). doi:10.1103/PhysRevE.52.5653
Walter, M., Doran, B., Gross, D., Christandl, M.: Entanglement polytopes: multiparticle entanglement from single-particle information. Science 340, 6137 (2013). doi:10.1126/science.1232957
Zhang, L.: Matrix integrals over unitary groups: an application of Schur–Weyl duality, arXiv:1408.3782v3
Zhang, L.: Average coherence and its typicality for random mixed quantum states. J. Phys. A: Math. Theor. doi:10.1088/1751-8121/aa6179
Zhang, L., Fei, S.-M.: Quantum fidelity and relative entropy between unitary orbits. J. Phys. A Math. Theor. 47, 055301 (2014). doi:10.1088/1751-8113/47/5/055301
Zhang, L., Chen, L., Bu, K.: Fidelity between one bipartite quantum state and another undergoing local unitary dynamics. Quantum Inf. Process. 14, 4715 (2015). doi:10.1007/s11128-015-1117-7
Zhang, L., Singh, U., Pati, A.K.: Average subentropy, coherence and entanglement of random mixed quantum states. Ann. Phys. 377, 125–146 (2017). doi:10.1016/j.aop.2016.12.024
Acknowledgements
L. Zhang is supported by Natural Science Foundation of Zhejiang Province of China (LY17A010027) and also by National Natural Science Foundation of China (Nos.11301124 and 61673145). H. Xiang is supported by the National Natural Science Foundation of China (Nos.11571265 and 11471253). Michael Walter is also acknowledged for his comments on this manuscript.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: The proof of Lemma 2.1
In this paper, we will utilize some notion of matrix integral [4, 5, 22]. The formula in Lemma 2.1 is given firstly. A detailed reasoning is presented here.
The proof of Lemma 2.1
Firstly, we note that
Then we have:
In what follows, we compute this value step by step.
-
(1).
If \((\pi ,\sigma )=((1),(1))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.4)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_{1}\rangle . \end{aligned}$$(4.5) -
(2).
If \((\pi ,\sigma )=((1),(12))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.6)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_{1}\rangle . \end{aligned}$$(4.7) -
(3).
If \((\pi ,\sigma )=((1),(13))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.8)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_1\rangle . \end{aligned}$$(4.9) -
(4).
If \((\pi ,\sigma )=((1),(23))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.10)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_1\rangle . \end{aligned}$$(4.11) -
(5).
If \((\pi ,\sigma )=((1),(123))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.12)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_1\rangle . \end{aligned}$$(4.13) -
(6).
If \((\pi ,\sigma )=((1),(132))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.14)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \langle i_1 | i'_1\rangle . \end{aligned}$$(4.15) -
(7).
If \((\pi ,\sigma )=((12),(1))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.16)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$(4.17) -
(8).
If \((\pi ,\sigma )=((12),(12))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.18)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$(4.19) -
(9).
If \((\pi ,\sigma )=((12),(13))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.20)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$(4.21) -
(10).
If \((\pi ,\sigma )=((12),(23))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.22)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$(4.23) -
(11).
If \((\pi ,\sigma )=((12),(123))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.24)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$(4.25) -
(12).
If \((\pi ,\sigma )=((12),(132))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_3\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.26)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) \left\langle i_1 \left| BC \right| i'_1 \right\rangle . \end{aligned}$$(4.27) -
(13).
If \((\pi ,\sigma )=((13),(1))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.28)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$(4.29) -
(14).
If \((\pi ,\sigma )=((13),(12))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.30)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$(4.31) -
(15).
If \((\pi ,\sigma )=((13),(13))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.32)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$(4.33) -
(16).
If \((\pi ,\sigma )=((13),(23))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.34)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$(4.35) -
(17).
If \((\pi ,\sigma )=((13),(123))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.36)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$(4.37) -
(18).
If \((\pi ,\sigma )=((13),(132))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_2\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.38)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) \left\langle i_1 \left| CB \right| i'_1 \right\rangle . \end{aligned}$$(4.39) -
(19).
If \((\pi ,\sigma )=((23),(1))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.40)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_{1}\rangle . \end{aligned}$$(4.41) -
(20).
If \((\pi ,\sigma )=((23),(12))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.42)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_{1}\rangle . \end{aligned}$$(4.43) -
(21).
If \((\pi ,\sigma )=((23),(13))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.44)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_1\rangle . \end{aligned}$$(4.45) -
(22).
If \((\pi ,\sigma )=((23),(23))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.46)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_1\rangle . \end{aligned}$$(4.47) -
(23).
If \((\pi ,\sigma )=((23),(123))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.48)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_1\rangle . \end{aligned}$$(4.49) -
(24).
If \((\pi ,\sigma )=((23),(132))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_1\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.50)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \langle i_1 | i'_1\rangle . \end{aligned}$$(4.51) -
(25).
If \((\pi ,\sigma )=((123),(1))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.52)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$(4.53) -
(26).
If \((\pi ,\sigma )=((123),(12))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.54)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$(4.55) -
(27).
If \((\pi ,\sigma )=((123),(13))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.56)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$(4.57) -
(28).
If \((\pi ,\sigma )=((123),(23))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.58)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$(4.59) -
(29).
If \((\pi ,\sigma )=((123),(123))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.60)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$(4.61) -
(30).
If \((\pi ,\sigma )=((123),(132))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_2\rangle \langle i_2 | i'_3\rangle \langle i_3 | i'_1\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.62)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( C\right) \left\langle i_1 \left| B \right| i'_1 \right\rangle . \end{aligned}$$(4.63) -
(31).
If \((\pi ,\sigma )=((132),(1))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.64)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$(4.65) -
(32).
If \((\pi ,\sigma )=((132),(12))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_3\rangle \end{aligned}$$(4.66)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$(4.67) -
(33).
If \((\pi ,\sigma )=((132),(13))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_2\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.68)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$(4.69) -
(34).
If \((\pi ,\sigma )=((132),(23))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_1\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.70)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$(4.71) -
(35).
If \((\pi ,\sigma )=((132),(123))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_2\rangle \langle j_2 | j'_3\rangle \langle j_3 | j'_1\rangle \end{aligned}$$(4.72)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$(4.73) -
(36).
If \((\pi ,\sigma )=((132),(132))\), then
$$\begin{aligned}&\sum _{i_2,i_3,j_1,j_2,j_3,i'_2,i'_3,j'_1,j'_2,j'_3} A_{j_1,j'_2}B_{i'_2,i_3}X_{j_3,j'_3}C_{i'_3,i_2}D_{j_2,j'_1} \nonumber \\&\quad \langle i_1 | i'_3\rangle \langle i_2 | i'_1\rangle \langle i_3 | i'_2\rangle \langle j_1 | j'_3\rangle \langle j_2 | j'_1\rangle \langle j_3 | j'_2\rangle \end{aligned}$$(4.74)$$\begin{aligned}&\quad = {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) \left\langle i_1 \left| C \right| i'_1 \right\rangle . \end{aligned}$$(4.75)Combing the 36 cases together gives the desired conclusion:
$$\begin{aligned}&\int UAU^\dagger BUXU^\dagger CUDU^\dagger \mathrm {d}\mu (U)= \mu _1\cdot \mathbb {1}_d+\mu _2\cdot BC+\mu _3\cdot CB \nonumber \\&\quad +\,\mu _4\cdot B + \mu _5\cdot C, \end{aligned}$$(4.76)where the coefficients \(\mu _j(j=1,\ldots ,5)\) are given below:
$$\begin{aligned} \mu _1:= & {} \mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( BC\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) {{\mathrm{Tr}}}_{}\left( C\right) , \end{aligned}$$(4.77)$$\begin{aligned} \mu _2:= & {} \mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) \nonumber \\&+\,\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) +\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( ADX\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( DAX\right) +\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) , \end{aligned}$$(4.78)$$\begin{aligned} \mu _3:= & {} \mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) +\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( ADX\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( DAX\right) +\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) , \end{aligned}$$(4.79)$$\begin{aligned} \mu _4:= & {} \mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( C\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( C\right) , \end{aligned}$$(4.80)$$\begin{aligned} \mu _5:= & {} \mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( AD\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( X\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( ADX\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(2,1){{\mathrm{Tr}}}_{}\left( DAX\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(3){{\mathrm{Tr}}}_{}\left( A\right) {{\mathrm{Tr}}}_{}\left( DX\right) {{\mathrm{Tr}}}_{}\left( B\right) \nonumber \\&+\,\mathrm {Wg}(1,1,1){{\mathrm{Tr}}}_{}\left( D\right) {{\mathrm{Tr}}}_{}\left( AX\right) {{\mathrm{Tr}}}_{}\left( B\right) . \end{aligned}$$(4.81)
We are done. \(\square \)
Remark 4.1
\(\mathrm {Wg}:=\frac{1}{(k!)^2}\sum _{\lambda \vdash k}\frac{\dim (\mathbf {P}_\lambda )^2}{\dim (\mathbf {Q}_\lambda )}\chi _\lambda \) is called the Weingarten function [4]. In particular, for \(\lambda \vdash 3\), we have:
where \(N_d=(d^2-1)(d^2-4)\). With these coefficients, we then have
Appendix 2: The proof of Theorem 2.2
By Lemma 2.1,
where
Note that the meaning of the notation \(\mathrm {Wg}(*)\) can be found in Appendix. Thus for \(f:=\sum ^{d_B}_{i,j,l=1}f(i,j,l)\), \(g:=\sum ^{d_B}_{i,j,l=1}g(i,j,l)\), and \(h:=\sum ^{d_B}_{i,j,l=1}h(i,j,l)\), we have
Hence, for \(T=\mathbb {1}_A\otimes \mathbb {1}_B/d_B - \rho _{AB}\), \({{\mathrm{Tr}}}_{}\left( T\right) =d_A-1\) and \({{\mathrm{Tr}}}_{}\left( T^2\right) =\frac{d_A-2}{d_B}+{{\mathrm{Tr}}}_{}\left( \rho ^2_{AB}\right) \), then
Therefore,
implying that
We make further analysis of the term \(a_n\), although we have already known the fact that \(\lim _{n\rightarrow \infty }a_n=0\). Let \(\varphi _\rho (X)={{\mathrm{Tr}}}_{}\left( \rho X\right) \). Apparently, \(\varphi _\rho \) is a positive unital linear mapping (in fact, it is a positive unital linear functional from the set of \(n\times n\) Hermitian matrices to \(\mathbb {R}\)). It is easily seen that \(f(x)=x^n\) is a convex function from \(\mathbb {R}\) to \(\mathbb {R}\). By using [10, Theorem 4.15, pp 147], we see that
By (2.4), we have
Thus
Then
where \(\mathrm {S}_L(\rho _{AB})\in \left[ 0,1-\frac{1}{d}\right] \). Clearly
Now,
We see from the above lower bound, i.e., \(-\ln (1-a_1)\), that when the purity of \(\rho _{AB}\) decreases, \(a_1\) increases. Hence such lower bound will be tighter.
Appendix 3: The proof of Proposition 3.2
Clearly, the first inequality is easily obtained
In order to show the second inequality, note that, for any two density matrices \(\rho \) and \(\sigma \),
Then, for \(\rho '_{AB}=U\rho _{AB}U^\dagger \), we have
implying that
By the concavity of fidelity, we have
Therefore,
This completes the proof.
Appendix 4: The proof of Theorem 3.4
Note that \(\rho '_{AB}=U\rho _{AB}U^\dagger \). We see from (3.8) that
Since \(I(A:B)_{\rho '} = \mathrm {S}(\rho '_A)+\mathrm {S}(\rho '_B)-\mathrm {S}(\rho _{AB})\), it follows that
That is,
This confirms the first inequality. Besides, by Eq. (3.4), we get
This confirms the second inequality. Therefore, we have
This is equivalent to the following
Next, we show that \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) = \mathrm {S}(\rho _{AB})\) if and only if \(\rho _{AB}\) is maximally mixed state. Clearly, if \(\rho _{AB}\) is maximally mixed state, i.e., \(\mathrm {S}(\rho _{AB})=\ln (d)\), since \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) - \mathrm {S}(\rho _{AB})\geqslant 0\), then \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) \geqslant \ln (d)\), apparently \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) \leqslant \ln (d)\), thus \(\mathrm {S}(\rho _{AB})=\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) =\ln (d)\), the maximum of von Neuman entropy. Reversely, if \(\mathrm {S}\left( c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\right) = \mathrm {S}(\rho _{AB})\), then by the obtained inequality, we have
which holds if and only if \(\rho _{AB} = c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\). This means that for any eigenvalue \(\lambda (\geqslant 0)\) of \(\rho _{AB}\) must satisfy that
Solving this equation, we get
Note that we have dropped another root being larger than one. Thus \(\rho _{AB}\) is maximally mixed state. In fact, we get that \(\rho _{AB} = c_0\cdot \mathbb {1}_d + c_1\cdot \rho _{AB} + c_2\cdot \rho ^2_{AB}\) if and only if \(\rho _{AB}\) is maximally mixed state.
Rights and permissions
About this article
Cite this article
Zhang, L., Xiang, H. Average entropy of a subsystem over a global unitary orbit of a mixed bipartite state. Quantum Inf Process 16, 112 (2017). https://doi.org/10.1007/s11128-017-1570-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1570-6