[go: up one dir, main page]

Skip to main content
Log in

Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we proposed a scheme for quantum information splitting of arbitrary two-qubit by using four-qubit cluster state and Bell-state as quantum channel. The splitter (Alice) and two receivers (Bob and Charlie) safely share a four-qubit cluster and Bell-state as quantum channel. Then, the sender Alice first performs Bell-state measurement (BSMs) on her qubit pairs, respectively, and tells the results to the receiver Bob and Charlie via a classical channel. But it is impossible for Bob to reconstruct the original state with local operations without help from Charlie. If Charlie allows Bob to reconstruct the original state information, he also needs to perform BSMs on his qubits and tell Bob the measurement result. Using the measurement results from Alice and Charlie, Bob can reconstruct the original state by applying the appropriate unitary operation. The scheme is tested against various attack scenarios such as eavesdropping attack, eavesdropping in the presence of a malicious attacker and even in the presence of a dishonest agent and found to be secure in all these cases. In addition, the deterministic quantum information splitting of arbitrary two-qubit state in cavity quantum electrodynamics is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bennett, C.H.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Rao, D.D.B., Ghosh, S., Panigrahi, P.K.: Generation of entangled channels for perfect teleportation using multielectron quantum dots. Phys. Rev. A 78(4), 042328 (2008)

    Article  ADS  Google Scholar 

  4. Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)

    Article  ADS  Google Scholar 

  5. Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B At. Mol. Opt. Phys. 43, 095508 (2010)

    Article  ADS  Google Scholar 

  6. Prasath, E.S., Muralidharan, S., Mitra, C., Panigrahi, P.K.: Multipartite entangled magnon states as quantum communication channels. Quantum Inf. Process. 11(2), 397–410 (2012)

    Article  MathSciNet  Google Scholar 

  7. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Efficient symmetric five-party quantum state sharing of an arbitrary m-qubit state. Int. J. Theor. Phys. 50(11), 3329–3336 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53–61 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hou, K., Liu, G.H., Zhang, X.X., Sheng, S.Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit steta using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ-Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  14. Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)

    Article  ADS  Google Scholar 

  16. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  17. Menon, J.V., Paul, N., Karumanchi, S., Muralidhara, S., Panigrah, P.K.: Quantum Tasks Using Six Qubit Cluster States. arXiv:0906.3874(2009)

  18. Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of Quantum Information Using N-Qubit Linear Cluster States. arXiv:0904.0563v2(2010)

  19. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhang, B.B., Liu, Y.: Economic and deterministic quantum teleportation of arbitrary bipartite pure and mixed state with shared cluster entanglement. Int. J. Theor. Phys. 48, 2644–2651 (2009)

    Article  MATH  Google Scholar 

  21. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)

    Article  ADS  Google Scholar 

  22. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  23. Cheung, C.V., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  24. Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six-qubit cluster states. Quantum Inf. Process. 10, 619–632 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284(4), 1082–1085 (2011)

    Article  ADS  Google Scholar 

  26. Ben-Or, M., Crpeau, C., Gottesman, D., Hassidim, A., Smith, A.: In: Proceedings of 47th Annual IEEE Symposium on the Foundations of Computer Science (FOCS06), pp. 249–260. IEEE Press, New York (2006)

  27. Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49(10), 2592–2599 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wiesner, S.: SIGACT news. Conjug. Coding 15, 78–88 (1983)

    Google Scholar 

  29. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  30. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination quantum teleportation. Nature 430, 54 (2004)

    Article  ADS  Google Scholar 

  31. Deng, F.G., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  32. Yin, X.F., Liu, Y.M., Zhang, W., Zhang, Z.J.: Simplified four-qubit cluster state for splitting arbitrary single-qubit information. Commun. Theor. Phys. 53, 49–53 (2010)

    Article  ADS  MATH  Google Scholar 

  33. Nie, Y.Y., Li, Y.H., Lin, J.C., Sang, M.H.: Quantum state sharing of an arbitrary four-qubit GHZ-type state by using a four-qubit cluster state. Quantum Inf. Process. 10, 603–608 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yang, C.P., Chu, S.I., Han, S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)

    Article  ADS  Google Scholar 

  35. Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A 42(11), 115303 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 052306 (2007)

    Article  ADS  Google Scholar 

  37. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  38. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  39. Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283(9), 1961–1965 (2010)

    Article  ADS  Google Scholar 

  40. Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)

    Article  ADS  Google Scholar 

  41. Wang, X.W., Peng, Z.H., Jia, C.X., Wang, Y.H., Liu, X.J.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun. 282(4), 670–673 (2009)

    Article  ADS  Google Scholar 

  42. Li, D.F., Wang, R.J., Zhang, F.L.: (2014) Quantum information splitting of a Two-qubit Bell state using a four-qubit Entangled state. Chin. Phys. C (1), 010601 (accepted)

  43. Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of arbitrary three-qubit state by using four-qubit cluster state and GHZ-state. Int. J. Theor. Phys. (published online), 1–12 (2014)

  44. Li, D.F., Wang, R.J., Zhang, F.L.: Quantum information splitting of arbitrary three-qubit state by using seven-qubit entangled state. Int. J. Theor. Phys. (published online), 1–8 (2014)

  45. Wang, X.P., Sang, M.H.: Splitting an arbitrary three-qubit state by using seven-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 53, 1064–1069 (2014)

    Article  MATH  Google Scholar 

  46. Bai, M.Q., Mo, Z.W.: Hierarchical quantum information splitting with eight-qubit cluster states. Quantum Inf. Process. 12, 1053–1064 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum teleportation and quantum information splitting by using a genuinely entangled six-qubit state. Int. J. Theor. Phys. 49, 2592–2599 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities (ZYGX2011J064). This work is also supported partly by the National Nature Science Foundation of China under Grant (Nos. 60903157 and 61133016), and the National High Technology Joint Research Program of China (863 Program, Grant No. 2011AA010706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-fen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Df., Wang, Rj., Zhang, Fl. et al. Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf Process 14, 1103–1116 (2015). https://doi.org/10.1007/s11128-014-0906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0906-8

Keywords

Navigation