Abstract
Semi-reflective quantum dot semiconductor optical amplifier (SR-QDSOA) is utilized to design ultra-fast (1 Tb/s) optical logic AND gate. The AND gate is simulated using rate equation model, and different parameters like extinction ratio (ER ~ 30.2 dB), contrast ratio (CR ~ 31.3 dB), amplitude modulation (AM < 0.002 dB) and quality factor (Q ~ 38 dB) are calculated. Pseudo eye diagram (PED) shows clear eye opening with large relative eye opening (REO ~ 99%) signifies efficient performance. Effect of amplified spontaneous noise and data rate are also investigated on the performance of the logic gate.













Similar content being viewed by others
Data availability
There is no associated data with this publication.
References
Ji, Y., Wang, H., Cui, J., et al.: All-optical signal processing technologies in flexible optical networks. Photon Netw. Commun. 38, 14–36 (2019). https://doi.org/10.1007/s11107-019-00838-y
Ali, F., Muhammad, F., Habib, U., et al.: Modeling and minimization of FWM effects in DWDM-based long-haul optical communication systems. Photon Netw. Commun. 41, 36–46 (2021). https://doi.org/10.1007/s11107-020-00913-9
Eid, M.M.A., Mohammed, A.E.-N.A., Rashed, A.N.Z.: Simulative study on the cascaded stages of traveling wave semiconductor optical amplifiers based multiplexing schemes for fiber optic systems improvement. J. Opt. Commun. (2021). https://doi.org/10.1515/joc-2020-0281
Raja, A., Mukherjee, K., Roy, J.N.: Design analysis and applications of all-optical multifunctional logic using a semiconductor optical amplifier-based polarization rotation switch. J. Comput. Electron. 20, 387–396 (2021). https://doi.org/10.1007/s10825-020-01607-1
Raja, A., Mukherjee, K., Roy, J.N.: Analysis of new all optical polarization-encoded dual SOA-based ternary NOT & XOR gate with simulation. Photon Netw. Commun. 41, 242–251 (2021). https://doi.org/10.1007/s11107-021-00932-0
Okada, T., Kobayashi, R., Rui, W., Sagara, M., Matsuura, M.: Photonic digital-to-analog conversion using a blue frequency chirp in a semiconductor optical amplifier. Opt. Lett. 45, 1483–1486 (2020)
Sharma, S., Roy, S.: Design of all-optical parallel multipliers using semiconductor optical amplifier-based Mach–Zehnder interferometers. J. Supercomput. (2021). https://doi.org/10.1007/s11227-020-03543-0
Zhie, Z., Xuelei, F., Kaiping, W., Honghai, W., Zhengying, L.: Research on polarization characteristics of a semiconductor optical amplifier fiber ring laser. In: 2020 5th International Conference on Smart Grid and Electrical Automation (ICSGEA), pp. 145–148 (2020). https://doi.org/10.1109/ICSGEA51094.2020.00038.
Mukherjee, K., Raja, A.: Three input NAND gate using semiconductor optical amplifier. In: 2020 IEEE VLSI device circuit and system (VLSI DCS), pp. 142-145 (2020). https://doi.org/10.1109/VLSIDCS47293.2020.9179931
Kotb, A., Zoiros, K.E., Guo, C.: 320 Gb/s all-optical XOR gate using semiconductor optical amplifier-Mach–Zehnder interferometer and delayed interferometer. Photon Netw. Commun. 38, 177–184 (2019). https://doi.org/10.1007/s11107-019-00844-0
Mukherjee, K., Raja, A., Maji, K.: All-optical logic gate NAND using semiconductor optical amplifiers with simulation. J. Opt. 48, 357–364 (2019). https://doi.org/10.1007/s12596-019-00555-9
Han, B., Xu, J., Chen, P., Guo, R., Gu, Y., Ning, Y., Liu, Y.: All-optical non-inverted parity generator and checker based on semiconductor optical amplifiers. Appl. Sci. 11, 1499 (2021). https://doi.org/10.3390/app11041499
Singh, K., Kaur, G., Singh, M.L.: Enhanced performance of all-optical half-subtracter based on cross-gain modulation (XGM) in semiconductor optical amplifier (SOA) by accelerating its gain recovery dynamics. Photon Netw. Commun. 34, 111–130 (2017). https://doi.org/10.1007/s11107-016-0677-5
Moshfe, S., Abedi, K., Moravvej-Farshi, M.K.: An integrated 2-bit all optical analog to digital converter based on photonic crystal semiconductor optical amplifier. Opt. Quant. Electron 53, 212 (2021). https://doi.org/10.1007/s11082-021-02858-3
Kaur, S., Prakash, A.: All-optical comparator using logic operations based on nonlinear properties of semiconductor optical amplifier. J. Opt. 47, 104–109 (2018). https://doi.org/10.1007/s12596-017-0421-2
Wang, B.: A research on all-optical wavelength conversion technology based on SOA. In: 2021 11th International Conference on Power, Energy and Electrical Engineering (CPEEE), pp. 76–81 (2021). https://doi.org/10.1109/CPEEE51686.2021.9383386
Hakimian, F., Shayesteh, M.R., Moslemi, M.R.: Optimization of four-wave mixing wavelength conversion in a quantum-dot semiconductor optical amplifier based on the genetic algorithm. Opt. Quant. Electron 53, 140 (2021). https://doi.org/10.1007/s11082-021-02763-9
Singh, S., Singh, S., Badraoui, N., et al.: Design and analysis of all-optical up- and down-wavelength converter based on FWM of SOA-MZI for 60 Gbps RZ data signal. Photon Netw. Commun. 34, 288–297 (2017). https://doi.org/10.1007/s11107-017-0696-x
Raja, A., Mukherjee, K., Roy, J.N.: Polarization rotation-based all-optical AND gate using single semiconductor optical amplifier and implementation of a majority gate. J. Opt. Commun. (2021). https://doi.org/10.1515/joc-2020-0303
Mukherjee, K.: A terabit-per-second all-optical four-bit digital-to-analog converter using quantum dot semiconductor optical amplifiers. J. Comput. Electron. (2021). https://doi.org/10.1007/s10825-021-01675-x
Sagara, M., Okada, T., Rui, W., Matsuura, M.: 4-bit resolution of photonic digital-to-analog conversion by frequency chirp in a QD-SOA. Opt. Electron. Commun. Conf. (OECC) 2020, 1–3 (2020). https://doi.org/10.1109/OECC48412.2020.9273640
Mukherjee, K., Dutta, S., Roy, S., et al.: All-optical digital to analog converter using Tera Hertz optical asymmetric demultiplexer based on quantum dot semiconductor optical amplifier. Opt. Quant. Electron. 53, 242 (2021). https://doi.org/10.1007/s11082-021-02900-4
Kotb, A., Guo, C.: All-optical NOR and XNOR logic gates at 2 Tb/s based on two-photon absorption in quantum-dot semiconductor optical amplifiers. Opt. Quant. Electron. 52, 30 (2020). https://doi.org/10.1007/s11082-019-2142-z
Fouskidis, D.E., Zoiros, K.E., Hatziefremidis, A.: Reconfigurable all-optical logic gates (AND, NOR, NOT, OR) with quantum-dot semiconductor optical amplifier and optical filter. IEEE J. Sel. Topics Quant. Electron. 27(2), 1–15 (2021). https://doi.org/10.1109/JSTQE.2020.3023807
Komatsu, K., Hosoya, G., Yashima, H.: All-optical logic NOR gate using a single quantum-dot SOA-assisted an optical filter. Opt. Quant. Electron. 50, 131 (2018). https://doi.org/10.1007/s11082-018-1384-5
Lee, D., Mai, V.V., Kim, H.: Mitigation of scintillation in FSOC using RSOA-based spectrum-sliced incoherent light. IEEE Photon. Technol. Lett. 33(5), 227–230 (2021). https://doi.org/10.1109/LPT.2021.3053565
Zoiros, K.E., Kastritsis, D., Rampone, T., et al.: Reflective semiconductor optical amplifier pattern effect compensation with birefringent fiber loop. Opt. Quant. Electron. 52, 366 (2020). https://doi.org/10.1007/s11082-020-02485-4
Rizou, Z.V., Zoiros, K.E., Rampone, T., Sharaiha, A.: Reflective semiconductor optical amplifier direct modulation capability enhancement using birefringent fiber loop. Appl. Sci. 10, 5328 (2020). https://doi.org/10.3390/app10155328
Mandal, P., Mallick, K., Dutta, B., et al.: Mitigation of Rayleigh backscattering in RoF-WDM-PON employing self coherent detection and bi-directional cross wavelength technique. Opt. Quant. Electron. 53, 77 (2021). https://doi.org/10.1007/s11082-020-02720-y
Babic, J., Totovic, A.R., Crnjanski, J.V., Krstic, M.M., Mashanovitch, M.L., Gvozdic, D.M.: Exploiting inductive peaking for enhancing the RSOA’s large-signal modulation performance. J. Lightw. Technol. (2011). https://doi.org/10.1109/JLT.2021.3069660
Kotb, A., Guo, C.: 120 Gb/s all-optical NAND logic gate using reflective semiconductor optical amplifiers. J. Modern Opt. 67(12), 1138–1144 (2020). https://doi.org/10.1080/09500340.2020.1813342
Mukherjee, K., Maji, K., Raja, A.: All optical four bit two's complement generator and single bit comparator using reflective semiconductor optical amplifier, IJNBM,9,1-2,64-79 (2020). https://doi.org/10.1504/IJNBM.2020.107416.
Maji, K., Mukherjee, K., Raja, A.: Performance of all-optical logic soliton-based AND gate using reflective semiconductor optical amplifier (RSOA). In: Kundu, S., Acharya, U., De, C., Mukherjee, S. (eds.) Proceedings of the 2nd International Conference on Communication Devices and Computing. Lecture Notes in Electrical Engineering, vol. 602. Springer: Singapore (2020)
Mukherjee, K., Majhi, K., Raja, A.: A novel approach to all-optical universal soliton logic gate NAND utilizing reflective semiconductor optical amplifiers. J. Opt. 49, 516–522 (2020). https://doi.org/10.1007/s12596-020-00645-z
Anzabi, K.S., Habibzadeh-Sharif, A., Connelly, M.J., Rostami, A.: Wideband steady-state and pulse propagation modeling of a reflective quantum-dot semiconductor optical amplifier. J. Lightw. Technol. 38, 797–803 (2020)
Anzabi, K.S., Sharif, A.H., et al.: Performance enhancement of an all-optical XOR gate using quantum-dot based reflective semiconductor optical amplifiers in a folded Mach–Zehnder interferometer. Opt. Laser Technol. 135, 106628 (2021)
Nady Abdul Aleem, M., Hussein, K.F.A., Ammar, A.-E.-H.A.: Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based mach-zehnder interferometer. Prog. Electromagn. Res. B 54, 69–88 (2013). https://doi.org/10.2528/pierb13063006
Hu, H., Zhang, X., Zhao, S., Zhang, L.: High-speed all-optical logic gate using QD-SOA and its application. Cogent. Phys. 4, 1 (2017). https://doi.org/10.1080/23311940.2017.1388156
Rendón-Salgado, I., Gutiérrez-Castrejón, R.: 160Gb/s all-optical AND gate using bulk SOA turbo–switched Mach–Zehnder interferometer. Opt. Commun. 399, 77–86 (2017). https://doi.org/10.1016/j.optcom.2017.04.054
Rendón-Salgado, I., Ramírez-Cruz, E., Gutiérrez-Castrejón, R.: 640 Gb/s all-optical AND gate and wavelength converter using bulk SOA turbo–switched Mach–Zehnder interferometer with improved differential scheme. Opt. Laser. Technol. 109, 671–681 (2019). https://doi.org/10.1016/j.optlastec.2018.08.055
Kotb, A., Zoiros, K.E., Guo, C.: 1 Tb/s all-optical XOR and AND gates using quantum-dot semiconductor optical amplifier-based turbo-switched Mach–Zehnder interferometer. J. Comput. Electron. 18, 628–639 (2019). https://doi.org/10.1007/s10825-019-01329-z
Kotb, A., Guo, C.: All-optical multifunctional AND, NOR, and XNOR logic gates using semiconductor optical amplifiers. Phys. Scr. 95, 085506 (2020)
Kim, T.Y., Kim, J.Y., Han, S.K.: All-optical regenerator using semi-reflective semiconductor optical amplifier. J. Opt. Soc. Korea 10(1), 11–15 (2006). https://doi.org/10.3807/JOSK.2006.10.1.011
Nabeyama, A., Yashima, H.: All-optical switchable logic gate using a single QD-SOA for RZ-BPSK signal inputs. Opt. Quant. Electron. 53, 244 (2021). https://doi.org/10.1007/s11082-021-02892-1
Zhang, X., Thapa, S., Dutta, N.K.: All-optical logic gates based on quantum-dot semiconductor optical amplifier. Int. J. High Speed Electron. Syst. 1(02), 131–141 (2018). https://doi.org/10.1142/S012915641840013X
Wang, Y., Wang, H., Kong, X., et al.: Research on output characteristics based on QD-SOA and QD-RSOA cross gain modulation all-optical logic NOR gate. Opt. Quant. Electron. 53, 715 (2021). https://doi.org/10.1007/s11082-021-03372-2
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mukherjee, K. Ultra-fast AND gate using single semi-reflective quantum dot semiconductor optical amplifier. Photon Netw Commun 45, 97–106 (2023). https://doi.org/10.1007/s11107-023-00996-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-023-00996-0