[go: up one dir, main page]

Skip to main content
Log in

Soil carbon fractions in grasslands respond differently to various levels of nitrogen enrichments

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Soil contains many different C fractions which have diverse physical and chemical compositions. Examining these differential soil C fractions in response to N enrichment is helpful for better understanding soil C changes under the predominantly increasing N deposition. In this study, we used a field N addition experiment in a grassland to explore the effects of various N enrichment levels on soil C fractions.

Methods

We conducted a field manipulative experiment which used a Latin square design with six N addition levels of 0, 2, 4, 8, 16 and 32 g N m−2 year−1 since 2003 in a semiarid grassland in northern China. Soil samples were collected in August (when plants have the greatest biomass), 2011. We measured C and N concentrations in soil light fraction, microbial biomass, extractable organic matter, heavy fraction, and total soil C and N.

Results

The results showed that total soil C and N, and heavy fraction C and N were not significantly affected by N addition after 9 years of treatments. In contrast, different N enrichment levels changed soil light fraction C and N, ranging from 4.3 to 27.7 % and 3.3–30.0 %, respectively. Moreover, both light fraction C and N had a nonlinear relationship with N addition rates, and the threshold for N-induced change in light fraction C and N was near 16 g N m−2 year−1 in this semiarid grassland. Increases of soil light fraction C and N primarily resulted from changes in biotic (N-stimulated aboveground biomass) and abiotic (soil temperature, moisture and pH) factors under N enrichment. Soil microbial biomass exponentially declined with increasing N, but extractable organic C showed a positive linear response to N enrichment rates. Changes in microbial biomass C and extractable organic C were primarily due to the reduced soil pH under N addition.

Conclusions

Our findings suggest that various soil C fractions differentially respond to elevated N, because different sets of biotic and abiotic factors regulate those fractions under N enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aanderud ZT, Richards JH, Svejcar T, James JJ (2010) A shift in seasonal rainfall reduces soil organic carbon storage in a cold desert. Ecosystems 13(5):673–682. doi:10.1007/s10021-010-9346-1

    Article  CAS  Google Scholar 

  • Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Chang Biol 16(1):358–372. doi:10.1111/j.1365-2486.2009.01950.x

    Article  Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5(1):1–25. doi:10.1139/er-5-1-1

    Article  CAS  Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86(5):717–738. doi:10.1046/j.1365-2745.1998.8650717.x

    Article  CAS  Google Scholar 

  • Cusack DF, Silver WL, Torn MS, McDowell WH (2011) Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry 104(1–3):203–225. doi:10.1007/s10533-010-9496-4

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173. doi:10.1038/Nature04514

    Article  PubMed  CAS  Google Scholar 

  • Demoling F, Figueroa D, Baath E (2007) Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem 39(10):2485–2495. doi:10.1016/j.soilbio.2007.05.002

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142. doi:10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96(2):314–322. doi:10.1111/j.1365-2745.2007.01345.x

    Article  CAS  Google Scholar 

  • Green CJ, Blackmer AM, Horton R (1995) Nitrogen effects on conservation of carbon during corn residue decomposition in soil. Soil Sci Soc Am J 59(2):453–459. doi:10.2136/sssaj1995.03615995005900020026x

    Article  CAS  Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic-matter quality in agricultural soils. Can J Soil Sci 74(4):367–385. doi:10.4141/cjss94-051

    Article  CAS  Google Scholar 

  • Hagedorn F, Spinnler D, Siegwolf R (2003) Increased N deposition retards mineralization of old soil organic matter. Soil Biol Biochem 35(12):1683–1692. doi:10.1016/j.soilbio.2003.08.015

    Article  CAS  Google Scholar 

  • Hart SC, Nason GE, Myrold DD, Perry DA (1994) Dynamics of gross nitrogen transformations in an old-growth forest - the carbon connection. Ecology 75(4):880–891. doi:10.2307/1939413

    Article  Google Scholar 

  • Huang ZQ, Clinton PW, Baisden WT, Davis MR (2011) Long-term nitrogen additions increased surface soil carbon concentration in a forest plantation despite elevated decomposition. Soil Biol Biochem 43(2):302–307. doi:10.1016/j.soilbio.2010.10.015

    Article  CAS  Google Scholar 

  • Hyvonen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen M, Wallin G (2007) The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173(3):463–480. doi:10.1111/j.1469-8137.2007.01967.x

    Article  PubMed  Google Scholar 

  • Hyvonen R, Persson T, Andersson S, Olsson B, Agren GI, Linder S (2008) Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 89(1):121–137. doi:10.1007/s10533-007-9121-3

    Article  Google Scholar 

  • IPCC (2007) Climatic Change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3(5):315–322. doi:10.1038/Ngeo844

    Article  CAS  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  • Johnson IR, Thornley JHM (1987) A model of shoot - root partitioning with optimal-growth. Ann Bot-Lond 60(2):133–142

    Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36(6):1821–1832. doi:10.2134/Jeq2007.0099

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627. doi:10.1126/science.1097396

    Article  PubMed  CAS  Google Scholar 

  • Lamarque JF, Kiehl JT, Brasseur GP, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess PG, Holland EA, Horowitz L, Lawrence MG, McKenna D, Merilees P, Prather MJ, Rasch PJ, Rotman D, Shindell D, Thornton P (2005) Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. J Geophys Res-Atmos 110(D19). doi:10.1029/2005jd005825

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379. doi:10.1890/06-2057.1

    Article  PubMed  Google Scholar 

  • Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. For Ecol Manag 185(3):263–273. doi:10.1016/S0378-1227(03)00164-6

    Article  Google Scholar 

  • Li YQ, Xu M, Zou XM (2006) Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest. Glob Chang Biol 12(2):284–293. doi:10.1111/j.1365-2486.2005.01096.x

    Article  Google Scholar 

  • Liu LL, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13(7):819–828. doi:10.1111/j.1461-0248.2010.01482.x

    Article  PubMed  Google Scholar 

  • Liu WX, Jiang L, Hu SJ, Li LH, Liu LL, Wan SQ (2014) Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biol Biochem. doi:10.1016/j.soilbio.2014.01.022

    Google Scholar 

  • Lu M, Zhou XH, Luo YQ, Yang YH, Fang CM, Chen JK, Li B (2011) Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agr Ecosyst Environ 140(1–2):234–244. doi:10.1016/j.agee.2010.12.010

    Article  CAS  Google Scholar 

  • Luo YQ, Wu LH, Andrews JA, White L, Matamala R, Schafer KVR, Schlesinger WH (2001) Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecol Monogr 71(3):357–376. doi:10.1890/0012-9615(2001)071[0357:Ecdecp]2.0.Co;2

    Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431(7007):440–443. doi:10.1038/Nature02887

    Article  PubMed  CAS  Google Scholar 

  • Magill AH, Aber JD (1998) Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203(2):301–311. doi:10.1023/a:1004367000041

    Article  CAS  Google Scholar 

  • Nave LE, Vance ED, Swanston CW, Curtis PS (2009) Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153(1–2):231–240. doi:10.1016/j.geoderma.2009.08.012

    Article  CAS  Google Scholar 

  • Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419(6910):915–917. doi:10.1038/Nature01136

    Article  PubMed  CAS  Google Scholar 

  • Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008) Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol 177(1):209–219. doi:10.1111/j.1469-8137.2007.02237.x

    PubMed  CAS  Google Scholar 

  • Niu SL, Yang HJ, Zhang Z, Wu MY, Lu Q, Li LH, Han XG, Wan SQ (2009) Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems 12(6):915–926. doi:10.1007/s10021-009-9265-1

    Article  CAS  Google Scholar 

  • Perakis SS, Hedin LO (2002) Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415(6870):416–419. doi:10.1038/Nature00959

    Article  PubMed  Google Scholar 

  • Pregitzer KS, Zak DR, Burton AJ, Ashby JA, MacDonald NW (2004) Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry 68(2):179–197. doi:10.1023/B:BIOG.0000025737.29546.fd

    Article  CAS  Google Scholar 

  • Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008) Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Glob Chang Biol 14(1):142–153. doi:10.1111/j.1365-2486.2007.01465.x

    Google Scholar 

  • Raich JW, Potter CS (1995) Global patterns of carbon-dioxide emissions from soils. Global Biogeochem Cy 9(1):23–36. doi:10.1029/94GB02723

    Article  CAS  Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1(7):430–437. doi:10.1038/ngeo230

    Article  CAS  Google Scholar 

  • Reid JP, Adair EC, Hobbie SE, Reich PB (2012) Biodiversity, nitrogen deposition, and CO2 affect grassland soil carbon cycling but not storage. Ecosystems 15(4):580–590. doi:10.1007/s10021-012-9532-4

    Article  CAS  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461(7263):472–475. doi:10.1038/461472a

    Article  PubMed  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56. doi:10.1038/Nature10386

    Article  PubMed  CAS  Google Scholar 

  • Sinsabaugh RL, Zak DR, Gallo M, Lauber C, Amonette R (2004) Nitrogen deposition and dissolved organic carbon production in northern temperate forests. Soil Biol Biochem 36(9):1509–1515. doi:10.1016/j.soilbio.2004.04.026

    Article  CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62(5):1367–1377. doi:10.2136/sssaj1998.03615995006200050032x

    Article  CAS  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11(10):1111–1120. doi:10.1111/j.1461-0248.2008.01230.x

    Article  PubMed  Google Scholar 

  • Vance ED, Chapin FS (2001) Substrate limitations to microbial activity in taiga forest floors. Soil Biol Biochem 33(2):173–188. doi:10.1016/s0038-0717(00)00127-9

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19(6):703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750. doi:10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

    Google Scholar 

  • von Lutzowa M, Kogel-Knabner I, Ekschmittb K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39(9):2183–2207. doi:10.1016/j.soilbio.2007.03.007

    Article  Google Scholar 

  • Wedin DA, Tilman D (1996) Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274(5293):1720–1723. doi:10.1126/science.274.5293.1720

    Article  PubMed  CAS  Google Scholar 

  • Xia JY, Wan SQ (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179(2):428–439. doi:10.1111/j.1469-8137.2008.02488.x

    Article  PubMed  CAS  Google Scholar 

  • Zeng DH, Li LJ, Fahey TJ, Yu ZY, Fan ZP, Chen FS (2010) Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland. Biogeochemistry 98(1–3):185–193. doi:10.1007/s10533-009-9385-x

    Article  CAS  Google Scholar 

  • Zhang NL, Wan SQ, Li LH, Bi J, Zhao MM, Ma KP (2008) Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China. Plant Soil 311(1–2):19–28. doi:10.1007/s11104-008-9650-0

    Article  CAS  Google Scholar 

  • Zhou XB, Zhang YM, Downing A (2012) Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China. Soil Biol Biochem 47:67–77. doi:10.1016/j.soilbio.2011.05.012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Xin Li, Shihuan Song, Naili Zhang, and Changhui Wang for their help in field measurement, instrument support, and laboratory analysis. We thank the staff of Duolun Restoration Ecology Experimentation and Demonstration Station. This study was financially supported by National Natural Science Foundation of China (31000227, 31290221), and Thousand Youth Talents Plan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuli Niu.

Additional information

Responsible Editor: Katja Klumpp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Niu, S., Li, L. et al. Soil carbon fractions in grasslands respond differently to various levels of nitrogen enrichments. Plant Soil 384, 401–412 (2014). https://doi.org/10.1007/s11104-014-2219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2219-1

Keywords

Navigation