[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Past, present and future of organic nutrients

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Slowing crop yield increases despite high fertiliser application rates, declining soil health and off-site pollution are testimony that many bioproduction systems require innovative nutrient supply strategies. One avenue is a greater contribution of organic compounds as nutrient sources for crops. That plants take up and metabolise organic molecules (‘organic nutrients’) has been discovered prior to more recent interest with scientific roots reaching far into the 19th century. Research on organic nutrients continued in the early decades of the 20th century, but after two world wars and yield increases achieved with mineral and synthetic fertilisers, a smooth continuation of the research was not to be expected, and we find major gaps in the transmission of methods and knowledge.

Scope

Addressing the antagonism of ‘organicists’ and ‘mineralists’ in plant nutrition, we illustrate how the focus of crop nutrition has shifted from organic to inorganic nutrients. We discuss reasons and provide evidence for a role of organic compounds as nutrients and signalling agents.

Conclusion

After decades of focussing on inorganic nutrients, perspectives have greatly widened again. As has occurred before in agricultural history, science has to validate agronomic practises. We argue that a framework that views plants as mixotrophs with an inherent ability to use organic nutrients, via direct uptake or aided by exoenzyme-mediated degradation, will transform nutrient management and crop breeding to complement inorganic and synthetic fertilisers with organic nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ackert L (2006) The role of microbes in agriculture: Sergei Vinogradskii’s discovery and investigation of chemosynthesis, 1880–1910. J Hist Biol 39:373–406

    Article  Google Scholar 

  • Acton EH (1889) The assimilation of carbon by green plants from certain organic compounds. Proc R Soc Lond B Biol Sci 47:118–121

    Article  Google Scholar 

  • Adamczyk B, Godlewski M, Zimny J, Zimny A (2008) Wheat (Triticum aestivum) seedlings secrete proteases from the roots and, after protein addition, grow well on medium without inorganic nitrogen. Plant Biol 10:718–724

    Article  PubMed  CAS  Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Anderson G (1958) Identification of derivatives of deoxyribonucleic acid in humic acid. Soil Sci 86:169–174

    Article  CAS  Google Scholar 

  • Badgley C, Perfecto I, Cassmann K (2007) Can organic agriculture feed the world? Renew Agric Food Syst 22:80–89

    Article  Google Scholar 

  • Baessler P (1884) Assimilation des Asparagins durch die Pflanze. Landw Vers Stat 33:231–240

    Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Berthelot M (1888) Sur la transformation dans le sol, des azotates en composes organiques azotes. C R Acad Sci 106:638–641

    Google Scholar 

  • Bollard EG (1966) A comparative study of the ability of organic nitrogenous compounds to serve as sole sources of nitrogen for the growth of plants. Plant Soil 25:153–166

    Article  CAS  Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Brigham RO (1917) Assimilation of organic nitrogen by Zea mays and the influence of Bacillus subtilis on such assimilation. Soil Sci 3:155–200

    Article  CAS  Google Scholar 

  • Cailletet L (1911) Sur l’origine du carbone assimilé par les plantes (On the origin of carbon assimilated by plants). C R Acad Sci 152:1215–1217

    CAS  Google Scholar 

  • Cambui CA, Svennerstam H, Gruffman L, Nordin A, Ganeteg U, Nasholm T (2011) Patterns of plant biomass partitioning depend on nitrogen source. PLoS One 6(4):e19211

    Article  PubMed  CAS  Google Scholar 

  • Cameron CA (1857) On urea as a direct source of nitrogen to vegetation. Rep Br Assoc Adv Sci 44:44–45

    Google Scholar 

  • Chapin FS III, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153

    Article  CAS  Google Scholar 

  • Chen DL, Delatorre CA, Bakker A, Abel S (2000) Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana. Planta 211:13–22

    Article  PubMed  CAS  Google Scholar 

  • Chimphango SBM, Musil CF, Dakora FD (2003) Response of purely symbiotic and NO3-fed nodulated plants of Lupinus luteus and Vicia atropurpurea to ultraviolet-B radiation. J Exp Bot 54:1771–1784

    Article  PubMed  CAS  Google Scholar 

  • Chivenge P, Vanlauwe B, Six J (2011) Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 342:1–30

    Article  CAS  Google Scholar 

  • Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JB III, Herrmann AM, Murphy DV (2009) In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol 151:1751–1757

    Article  PubMed  CAS  Google Scholar 

  • Coronado C, Zuanazzi J, Sallaud C, Quirion JC, Esnault R, Husson HP, Kondorosi A, Ratet P (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol 108:533–542

    PubMed  CAS  Google Scholar 

  • Davey CB (1996) Nursery soil management-organic amendments. In: Landis TD, Douth DB (eds) National proceedings, forest and conservation nursery associations. USDA Forest Service PNWRS, pp 6–18

  • Dessaux Y, Hinsinger P, Lemanceau P (2009) Rhizosphere: so many achievements and even more challenges. Plant Soil 321:1–3

    Article  CAS  Google Scholar 

  • Dourado-Neto D, Powlson D, Abu Bakar R, Bacchi OOS, Basanta MV, Cong PT, Keerthisinghe G, Ismaili M, Rahman SM, Reichardt K, Safwat MSA, Sangakkara R, Timm LC, Wang JY, Zagal E, van Kessel C (2010) Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc Am J 74:139–152

    Article  CAS  Google Scholar 

  • Drinkwater LE, Snapp SS (2007) Nutrients in agroecosystems: re-thinking the management paradigm. Adv Agron 92:163–186

    Article  CAS  Google Scholar 

  • Drinkwater L, Wagoner P, Sarranttonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265

    Article  CAS  Google Scholar 

  • Dufault RJ, Hester A, Ward B (2008) Influence of organic and synthetic fertility on nitrate runoff and leaching, soil fertility, and sweet corn yield and quality. Commun Soil Sci Plant Anal 39:1858–1874

    Article  CAS  Google Scholar 

  • Edwards JH, Someshwar AV (2000) Chemical, physical, and biological characteristics of agricultural an forest by-products for land applications. In: Bartels JMI, Dick WA (eds) Land application of agricultural, industrial, and municipal by-products. Soil Society of America Series Book, pp 1–62

  • Eggenberger K, Birtalan E, Schroder T, Brase S, Nick P (2009) Passage of trojan peptoids into plant cells. ChemBioChem 10:2504–2512

    Article  PubMed  CAS  Google Scholar 

  • Eggenberger K, Mink C, Wadhwani P, Ulrich AS, Nick P (2011) Using the peptide Bp100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells. ChemBioChem 12:132–137

    Article  PubMed  CAS  Google Scholar 

  • FAO (2011) Save and grow: a new paradigm of agriculture http://www.fao.org/ag/save-and-grow/

  • Feller CL, Thuriès LJM, Manlay RJ, Robin P, Frossard E (2003) “The principles of rational agriculture” by Albrecht Daniel Thaër (1752–1828). An approach to the sustainability of cropping systems at the beginning of the 19th century. J Plant Nutr Soil Sci 166:687–698

    Article  CAS  Google Scholar 

  • Flaig W (1965) Effect of lignin degradation products on plant growth. In: The use of isotopes and radiation in soil-plant nutrition studies. International Atomic Energy Agency, Ankara, pp 3–19

  • Flaig W (1968) Uptake of organic substances from soil organic matter by plant and their influence on metabolism. In: Study week on organic matter and soil fertility (Vatican City). North-Holland Pub. Co.; Wiley Interscience Division, J. Wiley & Sons, Amsterdam, New York, pp 723–776

  • Flaig W (1984) Soil organic matter as a source of nutrients. In: Banta S, Mendoza CV (eds) Organic matter and rice. International Rice Research Institute, pp 73–92

  • Flaig W, Harms H (1977) Uptake and transformation of labelled lignin derived phenols as a contribution of phenol metabolism in plants. J Nucl Agric Biol 6:41–44

    CAS  Google Scholar 

  • Flaig W, Saalbach E, Schobinger U (1960) Humic acids. XIX. The effect of cold-water extracts from wheat straw subjected to different periods of decomposition on the early growth and nutrient uptake of rye seedlings. Z Pflanzenernähr Düngung Bodenkd 88:232–236

    Article  CAS  Google Scholar 

  • Forde BG, Walch-Liu P (2009) Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ 32:682–693

    Article  PubMed  CAS  Google Scholar 

  • Führ F, Sauerbeck D (1966) The uptake of straw decomposition products by plant roots. In: The use of isotopes in soil organic matter studies. Pergamon Press Ltd., Oxford, pp 73–83

  • Gahan PB, Perry IJ, Stroun M, Anker P (1974) Effect of exogenous DNA on acid deoxyribonuclease activity in intact roots of Vicia faba L. Ann Bot (Lond) 38:701–704

    CAS  Google Scholar 

  • Gardenas AI, Agren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Katterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Biol Biochem 43:702–717

    Article  CAS  Google Scholar 

  • Ghorbani R, Wilcockson S, Leifert C (2005) Alternative treatments for late blight control in organic potato: antagonistic micro-organisms and compost extracts for activity against Phytophthora infestans. Potato Res 48:181–189

    Article  Google Scholar 

  • Goyal S, Chander K, Mundra MC, Kapoor KK (1999) Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biol Fertil Soils 29:196–200

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  PubMed  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  PubMed  CAS  Google Scholar 

  • Hall AD (1919) The book of the Rothamsted experiments, 2nd edn. John Murray, London, p 332

    Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen über die Stickstoffnahrung der Graminen und Leguminosen. Beilageheft zu der Zeitschrift des Vereins für Rübenzucker-Industrie Deutschen Reichs, 234 pp

  • Hill PW, Quilliam RS, DeLuca TH, Farrar J, Farrell M, Roberts P, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011a) Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One 6(4):e19220

    Article  PubMed  CAS  Google Scholar 

  • Hill PW, Farrar J, Roberts P, Farrell M, Grant H, Newsham KK, Hopkins DW, Bardgett RD, Jones DL (2011b) Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat Clim Chang 1:50–53

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Helgason T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273

    Article  Google Scholar 

  • Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  PubMed  CAS  Google Scholar 

  • Holst J, Brackin R, Robinson N, Lakshmanan P, Schmidt S (2012) Soluble inorganic and organic nitrogen in two Australian soils under sugarcane cultivation. Agric Ecosyst Environ 155:16–26

    Article  CAS  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–331

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson H, Miller N (1911) The direct assimilation of inorganic and organic forms of nitrogen by higher plants. Zweite Abt Bd 30:513–547

    Google Scholar 

  • Inselsbacher E, Näsholm T (2012) The below-ground perspective of forest plants: soil provides mainly organic nitrogen for plants and mycorrhizal fungi. New Phytol. doi:10.1111/j.1469-8137.2012.04169.x

  • Jämtgård S, Näsholm T, Huss-Danell K (2008) Characteristics of amino acid uptake in barley. Plant Soil 302:221–231

    Article  CAS  Google Scholar 

  • Jämtgård S, Näsholm T, Huss-Danell K (2010) Nitrogen compounds in soil solutions of agricultural land. Soil Biol Biochem 42:2325–2330

    Article  CAS  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Jensen H (1950) A survey of biological nitrogen fixation in relation to the world supply of nitrogen. In: Transactions 4th International Congress of Soil Science, 1: 165–172

  • Jensen WA (1957) The incorporation of C14-adenine and C14-phenylalanine by developing root-tip cells. Proc Natl Acad Sci 43:1038–1046

    Article  PubMed  CAS  Google Scholar 

  • Johnston AE, Poulton PR, Coleman K (2009) Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Adv Agron 101:1–57

    Article  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423

    Article  CAS  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci U S A 106:3041–3046

    Article  PubMed  CAS  Google Scholar 

  • Kaur K, Kapoor KK, Gupta AP (2005) Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. J Plant Nutr Soil Sci 168:117–122

    Article  CAS  Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832

    Article  PubMed  CAS  Google Scholar 

  • Kirchmann H (1985) Losses, plant uptake and utilisation of manure nitrogen during a production cycle. Acta Agriculturae: Scandinavica Suppl 24:1–77

    Google Scholar 

  • Kirchmann H, Bergström L (2001) Do organic farming practices reduce nitrate leaching? Commun Soil Sci Plant Anal 32:997–1028

    Article  CAS  Google Scholar 

  • Knudson L (1920) The secretion of invertase by plant roots. Am J Bot 7:371–379

    Article  CAS  Google Scholar 

  • Koepf H (1973) Organic management reduces leaching of nitrate. Biodynamics 108:20–30

    Google Scholar 

  • Kohli A, Narciso JO, Mirob B, Raorane M (2012) Root proteases: reinforced links between nitrogen uptake and mobilization and drought tolerance. Phys Plant 45:165–179

    Article  CAS  Google Scholar 

  • Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Suter Grotemeyer M, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–869

    Article  PubMed  CAS  Google Scholar 

  • Kristensen L, Stopes C, Kølster P, Granstedt A (1995) Nitrogen leaching in ecological agriculture: summary and recommendations. Biol Agric Hortic 11:331–340

    Google Scholar 

  • Kudeyarov VN (1992) Compensation for organic carbon loss from soil at nitrogen fertilizer application. In: Kubát J (ed) Humus, its structure and role in agriculture and environment. Elsevier, pp 81–89

  • Kuo Y-H, Lambein F, Ikegami F, van Parijs R (1982) Isoxazolin-5-ones and amino acidsin root exudates of pea and sweet pea seedlings. Plant Physiol 70:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Larsen J, Ravnskov S, Sorensen J (2007) Capturing the benefits of arbuscular mycorrhizae in horticulture. In: Hamel C, Planchette C (eds) Mycorrhizae in crop production. The Haworth Press, Binghamton, pp 123–150

    Google Scholar 

  • Lawes JB, Gilbert JH (1887) On the present position of the question of the sources of the nitrogen of vegetation, with some new results, and preliminary notice of new vegetation. Proc R Soc Lond 43:108–116

    Article  Google Scholar 

  • Lawes JB, Gilbert JH, Evan P (1860) On the source of the nitrogen; with special reference to the question whether plants assimilate free or uncombined nitrogen. Proc R Soc Lond 10:544–557

    Google Scholar 

  • Ledoux L (1965) Uptake of DNA by living cells (barley root Escherichia coli mouse). Prog Nucleic Acid Res Mol Biol 4:231–267

    Article  PubMed  CAS  Google Scholar 

  • Ledoux L, Huart R (1972) Fate of exogenous DNA in plants. In: Ledoux L (ed) Uptake of informative molecules by living cells. North-Holland Publishing Co, Amsterdam, pp 254–276

    Google Scholar 

  • Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316

    Article  Google Scholar 

  • MacVicar R (1957) Nitrogen-15 as a tracer of nitrogen metabolism of plants. In: Comar CL (ed) Atomic energy and agriculture, AAAS Publ. No.49, pp 111–122

  • Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217–233

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press Ltd., London

    Google Scholar 

  • Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci U S A 93:7623–7627

    Article  PubMed  CAS  Google Scholar 

  • Mazé P (1899) L’assimilation des hydrates de carbone et l’élaboration de l’azote organique dans les végétaux supérieurs (Carbohydrate assimilation and organic nitrogen synthesis in higher plants). C R Acad Sci 128:185–187

    Google Scholar 

  • McNeill JR, Winiwarter V (2004) Breaking the sod: humankind, history, and soil. Science 304:1627–1629

    Article  PubMed  CAS  Google Scholar 

  • Miettinen JK (1959) Assimilation of amino acids in higher plants, utilization of nitrogen and its compounds by plants. Symp Soc Exp Biol 13:210–229

    Google Scholar 

  • Miller RH, Schmidt EL (1965) Uptake and assimilation of amino acids supplied to the sterile soil: root environment of the bean plant (Phaseolus vulgaris). Soil Sci 100:323–330

    Article  CAS  Google Scholar 

  • Molliard M (1905) Culture pure des plantes vertes dans une atmosphère confinée en présence de matières organiques (Pure culture of green plants in confined atmosphere and presence of organic compounds). C R Acad Sci 141:389–392

    CAS  Google Scholar 

  • Molliard M (1909) Valeur alimentaire de l’asparagine et de l’urée vis-à-vis du radis (Nutritional value of asparagin and urea for radish). Bull Soc Bot Fr 56:534–538

    CAS  Google Scholar 

  • Molliard M (1910) Recherches sur l’utilisation par les plantes supérieures de diverses substances azotées (Research on the use of nitrogen substances by higher plants). Bull Soc Bot Fr 57:541–546

    Google Scholar 

  • Mulvaney RL, Khan SA, Ellsworth TR (2009) Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Qual 38:2295–2314

    Article  PubMed  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots—an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  PubMed  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci U S A 105:4524–4529

    Article  PubMed  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Schenk PM, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. J Exp Bot 60:2665–2676

    Article  PubMed  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Mudge SR, Schenk PM, Christie M, Carroll BJ, Schmidt S (2010a) DNA is taken up by root hairs and pollen, and stimulates root and pollen tube growth. Plant Physiol 153:799–805

    Article  PubMed  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb R, Sagulenko E, Näsholm T, Schmidt S, Lonhienne T (2010b) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5(7):e11915

    Article  PubMed  CAS  Google Scholar 

  • Phelan PL (2009) Ecology-based agriculture and the next Green Revolution. Is modern agriculture exempt from the laws of ecology? In: Bohlen P, House G (eds) Sustainable agroecosystem management. Boca Raton, pp. 98–128

  • Preston RD (1941) The Rothamsted field experiments on the growth of wheat. Nature 147:583–584

    Article  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Beardall J, Flynn KJ, Maberly SC (2009) Darwin review: phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987

    Article  PubMed  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43:131–167

    Article  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  PubMed  CAS  Google Scholar 

  • Robinson N, Brackin R, Vinall K, Soper F, Holst J, Gamage H, Paungfoo-Lonhienne C, Rennenberg H, Lakshmanan P, Schmidt S (2011) Nitrate paradigm does not holdup for sugarcane. PLoS One 6:e19045

    Article  PubMed  CAS  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475

    Article  PubMed  CAS  Google Scholar 

  • Roper MM, Ladha JK (1995) Biological N2 fixation by heterotrophic and phototrophic bacteria in association with straw. Plant Soil 174:211–224

    Article  CAS  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Ryan P, Dessaux Y, Thomashow L, Weller D (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    Article  CAS  Google Scholar 

  • Salter RM (1947) World soil and fertilizer resources in relation to food needs. Science 105:533–538

    Article  PubMed  CAS  Google Scholar 

  • Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci Food Agric 86:10–17

    Article  CAS  Google Scholar 

  • Scheffer F, Kickuth R, Schlimme E (1968) Aufnahme und metabolisierung radiculär angebotenen indols durch Sinapis alba. Plant Soil 28:453–459

    Article  CAS  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schmidt S, Mason M, Sangtiean T, Stewart GR (2003) Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen? Plant Soil 248:157–165

    Article  CAS  Google Scholar 

  • Schreiner O (1913) The organic constituents of soils. US Department of Agriculture, Bureau of Soils, Circular No. 74 - Washington, Government Printing Office

  • Schreiner O, Shorey EC (1910a) The presence of arginine and histidine in soils. J Biol Chem 8:381–384

    Google Scholar 

  • Schreiner O, Shorey EC (1910b) Pyrimidine derivatives and purine bases in soils. J Biol Chem 8:385–393

    Google Scholar 

  • Schreiner O, Skinner JJ (1915) Specific action of organic compounds in modifying plant characteristics: methyl glycol versus glycocoll. Bot Gaz 59:445–463

    Article  CAS  Google Scholar 

  • Schreiner O, Mertz AR, Brown BE (1938) Fertiliser materials—soil & men. In: USDA Yearbook of Agriculture 1938. US Gov. Printing Office, pp 487–521

  • Seear J, Bradfute OE, McLaren AO (1968) Uptake of proteins by plant roots. Phys Plant 21:979–989

    Article  CAS  Google Scholar 

  • Seegmüller S, Rennenberg H (2002) Transport of organic sulfur and nitrogen in the roots of young mycorrhizal pedunculate oak trees (Quercus robur L.). Plant Soil 242:291–297

    Article  Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature. doi:10.1038/nature11069

  • Skinner JJ (1912a) Beneficial effect of creatinine and creatine on growth. Bot Gaz 54:0152–0163

    Article  CAS  Google Scholar 

  • Skinner JJ (1912b) Effect of histidine and arginine as soil constituents. In 8th International Congress of Applied Chemistry, Vol. XV covering Section VII: Agricultural Chemistry. pp 253–264

  • Smil V (2004) Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge, pp 133–154

    Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Soper FM, Paungfoo-Lonhienne C, Brackin R, Rentsch D, Schmidt S, Robinson N (2011) Arabidopsis and Lobelia anceps access small peptides as a nitrogen source for growth. Funct Plant Biol 38:788–796

    Article  CAS  Google Scholar 

  • Streeter J (1988) Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci 7:1–23

    Article  CAS  Google Scholar 

  • Sutton MA, Oenema O, Erisman JW, Leip A, van Grinsven H, Winiwarter W (2011) Too much of a good thing. Nature 472:159–161

    Article  PubMed  CAS  Google Scholar 

  • Svennerstam H, Jämtgård S, Ahmad I, Huss-Danell K, Näsholm T, Ganeteg U (2011) Transporters in Arabidopsis roots mediating uptake of amino acids at naturally occurring concentrations. New Phytol 191:459–467

    Article  PubMed  CAS  Google Scholar 

  • Tate KR (1984) The biological transformation of P in soil. Plant Soil 76:245–256

    Article  CAS  Google Scholar 

  • Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011

    Article  PubMed  CAS  Google Scholar 

  • Thaër A (1809) Grundsätze der Rationnellen Landwirtschaft (1809–1812). Realschulbuch Ed, Berlin

    Google Scholar 

  • Thakur AK, Uphoff N, Antony E (2010) An assesssment of physiological effects of system of rice intensification (SRI) practices compared with recommended rice cultivation practices in India. Exp Agric 46:77–98

    Article  Google Scholar 

  • Thornton HG, Nicol H (1934) Further evidence upon the nitrogen uptake of grass grown with lucerne. J Agric Sci 24:540–543

    Article  CAS  Google Scholar 

  • Thornton B, Osborne SM, Paterson E, Cash P (2007) A proteomic and targeted metabolomic approach to investigate change in Lolium perenne roots when challenged with glycine. J Exp Bot 58:1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  PubMed  CAS  Google Scholar 

  • Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P, Ostle N, Cliquet JB, Francez AJ, Fitter AH, Young JPW (2007) Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc Natl Acad Sci U S A 104:16970–16975

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen E, Roling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  PubMed  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vidal EA, Tamayo KP, Gutierrez RA (2010) Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana. WIREs Syst Biol Med 2:683–693

    Article  CAS  Google Scholar 

  • Vinall K, Schmidt S, Brackin R, Lakshmanan P, Robinson N (2012) Amino acids are a nitrogen source for sugarcane. Funct Plant Biol. doi:10.1071/FP12042

  • Virtanen AI (1938) Cattle fodder and human nutrition. With special reference to biological nitrogen fixation. Cambridge University Press

  • Virtanen AI (1953) Atmosphärischer Stickstoff als Aufrechterhalter des Lebens auf der Erde. Angew Chem 65:1–11

    Article  CAS  Google Scholar 

  • Virtanen AI, von Hausen S (1935) Excretion of nitrogenous compounds from the root nodules of leguminous plants. Nature 135:184–185

    Article  CAS  Google Scholar 

  • Walch-Liu P, Ivanov II, Filleur S, Gan YB, Remans T, Forde BG (2006a) Nitrogen regulation of root branching. Ann Bot (Lond) 97:875–881

    Article  CAS  Google Scholar 

  • Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG (2006b) Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057

    Article  PubMed  CAS  Google Scholar 

  • Waterworth WM, Bray CM (2006) Enigma variations for peptides and their transporters in higher plants. Ann Bot 98:1–8

    Article  PubMed  CAS  Google Scholar 

  • Whiteside MD, Treseder KK, Atsatt PR (2009) The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90:100–108

    Article  PubMed  Google Scholar 

  • Winogradsky S (1890) Recherches sur les organismes de la nitrification. Ann Inst Pasteur t.4:213–234

    Google Scholar 

  • Winogradsky S (1895) Recherches sur l’assimilation de l’azote libre de l’atmosphère par les microbes. Arch Sci Biol (St Petersb) 3:297–352

    CAS  Google Scholar 

  • Winogradsky S (1927a) Sur la fixation de l’azote atmosphérique. In: Conférence faite au Congrès de l’Azote Synthétique à Montpellier, le 31 Mai 1927

  • Winogradsky S (1927b) Sur le pouvoir fixateur des terres. In: Conférence presentée au Septième Congrès de Chimie Industrielle, Octobre 1927

  • Wojtaszek P, Stobiecki M, Gulewicz K (1993) Role of nitrogen and plant growth regulators in the exudation and accumulation of isoflavonoids by roots of intact white lupin (Lupinus albus L.) plants. J Plant Physiol 142:689–694

    Article  CAS  Google Scholar 

  • Yamakawa S, Sakuta C, Matsubayashi Y, Sakagami Y, Kamada H, Satoh S (1998) The promotive effects of a peptidyl plant growth factor, phytosulfokine-alpha, on the formation of adventitious roots and expression of a gene for a root-specific cystatin in cucumber hypocotyls. J Plant Res 111:453–458

    Article  CAS  Google Scholar 

  • Zhang W, Han DY, Dick WA, Davis KR, Hoitink HAJ (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Wu L, Dong C, Li Y (2010) Rice yield, nitrogen utilization and ammonia volatilization as influenced by modified rice cultivation at varying nitrogen rates. Agric Sci 1:10–16

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr David Teakle for discussions about the history of organic plant nutrition and his critical comments that have improved the manuscript, to Prof Peter Gahan for his advice on the section on DNA uptake, to Dr Paul Scott for his thoughtful comments on this manuscript. Our research is enabled with funding from the Australian Research Council (Discovery Grant DP0986495 to SS) and The University of Queensland (Early Career Researcher grant to CPL). We gratefully acknowledge the excellent facilities provided by the ARC Centre of Excellence for Integrative Legume Research. The authors acknowledge the following references in Fig. 2: hydroponic pea plants (Centralblatt für Bakteriologie, Parasitenkunde und Infektionskrankenheiten, 30, page 30, 1911); hydroponic wheat (reprinted from Botanical Gazette, Volume 59, page 456, 1915 with permission of The University of Chicago Press); scheme apparatus (Reprinted from The Use of Isotopes and Radiation in Soil-Plant Nutrition Studies, page 11, 1965 with permission of International Atomic Energy Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanyarat Paungfoo-Lonhienne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paungfoo-Lonhienne, C., Visser, J., Lonhienne, T.G.A. et al. Past, present and future of organic nutrients. Plant Soil 359, 1–18 (2012). https://doi.org/10.1007/s11104-012-1357-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1357-6

Keywords

Navigation