[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Artichoke: botanical, agronomical, phytochemical, and pharmacological overview

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Artichoke, Cynara cardunculus, is a dietary and medicinal plant species with a long tradition of use dating back to the ancient Egyptians, Greeks, and Romans. It comprises the globe artichoke, C. cardunculus subsp. scolymus, the cultivated cardoon, C. cardunculus subsp. altilis, and the wild cardoon, C. cardunculus subsp. sylvestris. The edible part of the plant is limited to the fleshy leaves (bracts) and receptacle of a large immature inflorescence, named capitulum or head, that has been shown to be a rich source of bioactive compounds. On the other hand, leaves, external bracts and stems discarded by the artichoke processing industry corresponding to about 80–85 % of the total biomass of the plant, represent a suitable potential source of food additives and nutraceuticals. Nutritional and pharmacological properties of artichoke heads and leaves are attributed mainly to polyphenolic compounds and inulin present at high concentration. Other classes of chemical compounds, including flavonoids, anthocyanins, sesquiterpenes, and triterpenes have been also found in the plant at lower amounts. This review, after a general historical, phytogeographical, and ethnobotanical overview, summarizes the current knowledge on the phytochemistry and pharmacological properties of this plant, with special emphasis on the agronomical and nutritional importance of the plant and to the methods of analysis, including the recently developed metabolomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Reidah IM, Arráez-Román D, Segura-Carretero A et al (2013) Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC–DAD–ESI–QTOF–MS. Food Chem 141(3):2269–2277

    Article  CAS  PubMed  Google Scholar 

  • Adzet T, Puigmacia M (1985) High-performance liquid chromatography of caffeoylquinic acid derivatives of Cynara scolymus L. leaves. J Chromatogr 348(2):447–453

    Article  CAS  Google Scholar 

  • Adzet T, Camarasa J, Laguna JC (1987) Hepatoprotective activity of polyphenolic compounds in isolated rat hepatocytes from Cynara scolymus against CCl4 toxicity: in isolated rat hepatocytes. J Nat Prod 50(4):612–617

    Article  CAS  PubMed  Google Scholar 

  • Akihisa T, Yasukawa K, Oinuma H et al (1996) Triterpene alcohols from the flowers of compositae and their anti-inflammatory effects. Phytochemistry 43(6):1255–1260

    Article  CAS  PubMed  Google Scholar 

  • Aljancić I, Vajs V, Menković N et al (1999) Flavones and sesquiterpene lactones from Achillea atrata subsp. multifida: antimicrobial activity. J Nat Prod 62:909–911

    Article  PubMed  Google Scholar 

  • Amato M, D’Orilia F, Gay V et al (2011) Multifunctional agriculture and sustainability in the Cilento Geopark. In: Dolven JK, Ramsay T, Rangnes K (eds) Proceedings of the 10th European geoparks conference. European Geoparks Network, Porsgrunn, pp 41–48

    Google Scholar 

  • Archontoulis SV, Struik PC, Vos J et al (2010) Phenological growth stages of Cynara cardunculus: codification and description according to the BBCH scale. Ann Appl Biol 156:253–270

    Article  Google Scholar 

  • Aubert S, Foury C (1981) Couleur et pigmentation anthocyanique de l’artichaut (Cynara scolymus L). In: Marzi V, Lattanzio V (eds) Studi sul Carciofo. Laterza, Bari, pp 57–76

    Google Scholar 

  • Barbetti P, Chiappini I, Fardella G et al (1993) Grosulfeimin and new related guaianolides from Cynara scolymus L. Nat Prod Lett 3:21–30

    Article  CAS  Google Scholar 

  • Bianco VV (1990) Carciofo (Cynara scolymus L.). In: Bianco VV, Rimpini F (eds) Orticoltura. Patron, Bologna

    Google Scholar 

  • Brown JE, Rice-Evans C (1998) Luteolin-rich artichoke extract protects low-density lipoprotein from oxidation in vitro. Free Radic Res 29:247–255

    Article  CAS  PubMed  Google Scholar 

  • Cantore V, Boari F (2009) Irrigazione e Salinità. In: Calabrese N (ed) Il carciofo e il cardo. Script, Bologna, pp 190–197

    Google Scholar 

  • Cao X, Xiao H, Zhang Y et al (2010) 1,5 Dicaffeoylquinic acid-mediated glutathione synthesis through activation of Nrf2 protects against OGD/reperfusion-induced oxidative stress in astrocytes. Brain Res 1347:142–148

    Article  CAS  PubMed  Google Scholar 

  • Causey BSJL, Feirtag JM, Gahaher DD et al (2000) Effects of dietary inulin on serum lipids, blood glucose and the gastrointestinal environment in hypercholesterolemic men. Nutr Res 20(2):19l–201

    Article  Google Scholar 

  • Chen JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378

    Article  CAS  Google Scholar 

  • Chevallier A (1996) The encyclopedia of medicinal plants. DK Publishing, New York, pp 96–97

    Google Scholar 

  • Choi SZ, Choi SU, Lee KR (2005) Cytotoxic sesquiterpene lactones from Saussurea calcicola. Arch Pharm Res 28:1142–1146

    Article  CAS  PubMed  Google Scholar 

  • Christaki E, Bonos E, Florou-Paneri PC (2012) Nutritional and functional properties of Cynara crops (globe artichoke and cardoon) and their potential applications: a review. Int J Appl Sci Technol 2:64–70

    Google Scholar 

  • Clifford M (2000) Chlorogenic acids and other cinnamates: nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80:1033–1043

    Article  CAS  Google Scholar 

  • De Falco E, di Novella N (2011) Guida alle piante tintorie del Cilento e Vallo di Diano. MIdA, Milan

    Google Scholar 

  • de Falco B, Incerti G, Pepe R et al (2015) Metabolomic fingerprinting of artichoke, Cynara cardunculus, using nuclear magnetic resonance and multivariate data analysis. In: Proceedings of the Phytochemical Society of Europe (PSE), future trends in phytochemistry in the global era of agri-food and health II: a young scientist meeting, 27–30/4/2015, Murcia. ISBN 978-0-9565472-6-2, pp 72–73

  • Ding Y, Nguyen HT, Kim SI et al (2009) The regulation of inflammatory cytokine secretion in macrophage cell line by the chemical constituents of Rhus sylvestris. Bioorg Med Chem Lett 19:3607–3610

    Article  CAS  PubMed  Google Scholar 

  • Dranik LI, Chernobai VT (1966) A new flavonoid isolated from the leaves of Cynara scolymus L. Chem Nat Compd 2(1):16–20

    Article  CAS  Google Scholar 

  • Dranik LI, Chernobai VT, Kolesnikov DG (1964) Polyphenolic compounds of Cynara scolymus. Med Prom SSSR 18:23

    CAS  PubMed  Google Scholar 

  • Durazzo A, Foddai MS, Temperini A et al (2013) Antioxidant properties of seeds from lines of artichoke, cultivated cardoon and wild cardoon. Antioxidants 2:52–61

    Article  CAS  Google Scholar 

  • Falleh H, Ksouri R, Chaieb K et al (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C R Biol 331:372–379

    Article  CAS  PubMed  Google Scholar 

  • FAO (2013) Faostat, crop production. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. 21 May 2013

  • Farag MA, El-Ahmady SH, Elian FS et al (2013) Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics. Phytochemistry 95:177–187

    Article  CAS  PubMed  Google Scholar 

  • Fleming T (ed) (1998) PDR for herbal medicines. Medical Economics Company, Montvale, pp 793–794

    Google Scholar 

  • Foury C, Aubert S (1977) Observations preliminaries sur la presence et la repartition de pigments anthocyaniques dans un mutant d’artichaut (Cynara scolymus L.) a fleur blanches. Ann Amélior Plant 27:603–612

    CAS  Google Scholar 

  • Fratianni F, Tucci M, De Palma M et al (2007) Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem 104:1282–1286

    Article  CAS  Google Scholar 

  • Fritsche J, Beindorff CM, Dachtler M et al (2002) Isolation, characterization and determination of minor artichoke (Cynara scolymus L.) leaf extract compounds. Eur Food Res Technol 215:149–157

    Article  CAS  Google Scholar 

  • Gallaher DD, Stallings WH, Blessing LL et al (1996) Probiotics, cecal microflora, and aberrant cryps in the rat colon. J Nutr 126:1362–1371

    CAS  PubMed  Google Scholar 

  • Garbetta A, Capotorto I, Cardinali A et al (2014) Antioxidant activity induced by main polyphenols present in edible artichoke heads: influence of in vitro gastro-intestinal digestion. J Funct Food 10:456–464

    Article  CAS  Google Scholar 

  • Gebhardt R (1997) Antioxidative and protective properties of extracts from leaves of the artichoke (Cynara scolymus L.) against hydroperoxide-induced oxidative stress in cultured rat hepatocytes. Toxicol Appl Pharmacol 144(2):279–286

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R (1998) Inhibition of cholesterol biosynthesis in primary cultured rat hepatocytes by artichoke (Cynara scolymus L.) extracts. J Pharmacol Exp Ther 286:1122–1128

    CAS  PubMed  Google Scholar 

  • Gebhardt R (2000) Choleretic and anticholestatic activities of flavonoids of artichoke (Cynara cardunculus L. subsp. scolymus L. Hayek). Acta Hortic 681:429–436

    Google Scholar 

  • Gebhardt R (2001) Anticholestatic activity of flavonoids from artichoke (Cynara scolymus L.) and of their metabolites. Med Sci Monit 7:316–320

    PubMed  Google Scholar 

  • Gibson GR, Beatty ER, Wang X (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982

    Article  CAS  PubMed  Google Scholar 

  • Gonthier MP, Verny MA, Besson C et al (2003) Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133:1853–1859

    CAS  PubMed  Google Scholar 

  • Hădărugăa NG, Hădărugăb DI, Tatuc C et al (2009) Multivariate analysis (PCA) in Compositae biocompounds class. J Agroaliment Proc Technol 15(2):201–210

    Google Scholar 

  • Hay AJ, Hamburger M, Hostettmann K et al (1994) Toxic inhibition of smooth muscle contractility by plant-derived sesquiterpenes caused by their chemically reactive alpha-methylenebutyrolactone functions. Br J Pharmacol 112(1):9–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Incerti G, Romano A, Termolino P et al (2013) Metabolomic fingerprinting using nuclear magnetic resonance and multivariate data analysis as a tool for biodiversity informatics: a case study on the classification of Rosa x damascena. Plant Biosys 147(4):947–954

    Article  Google Scholar 

  • Krimkova L, Mučaji P, Nagy M et al (2004) Triterpenoid cynarasaponins from Cynara cardunculus L. reduce chemically induced mutagenesis in vitro. Phytomedicine 11:673–678

    Article  Google Scholar 

  • Lanteri S, Portis E (2008) Globe artichoke and cardoon. In: Prohens J, Nuez F (eds) Vegetables: handbook of plant breeding, vol 1. Springer, New York, pp 49–74

    Chapter  Google Scholar 

  • Lattanzio V (1982) Composizione, valore nutritivo e terapeutico del carciofo. Inf Agrar 38(1):18727

    Article  Google Scholar 

  • Lattanzio V, Morone I (1979) Variations of the orthodiphenol content in Cynara scolymus L. during the plant growing season. Experientia 35:993–994

    Article  CAS  Google Scholar 

  • Lattanzio V, Van Sumere CF (1987) Changes in phenolic compounds during the development and cold storage of artichoke. Food Chem 24(1):37–50

    Article  CAS  Google Scholar 

  • Lattanzio V, Kroon PA, Linsalata V et al (2009) Globe artichoke: a functional food and source of nutraceutical ingredients. J Funct Food 1:131–144

    Article  CAS  Google Scholar 

  • Llorach R, Espin JC, Tomás-Barberán FA et al (2002) Artichoke (Cynara scolymus L.) byproducts as a potential source of health-promoting antioxidant phenolics. J Agric Food Chem 50(12):3458–3464

    Article  CAS  PubMed  Google Scholar 

  • Lombardo S, Pandino G, Mauromicale G et al (2010) Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori]. Food Chem 119:1175–1181

    Article  CAS  Google Scholar 

  • Lopez-Molina D, Navarro-Martınez MD, Rojas-Melgarejo F et al (2005) Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry 66:1476–1484

    Article  CAS  PubMed  Google Scholar 

  • Marzi V, Lattanzio V (1981) Studi sul carciofo. Laterza, Bari, pp 1126

  • Meyer D, Bayarri S, Tárrega A et al (2011) Inulin as texture modifier in dairy products. Food Hydrocoll 25:1881–1890

    Article  CAS  Google Scholar 

  • Nishizawa M, Fujimoto Y (1986) Isolation and structural elucidation of a new lipoxygenase inhibitor from Gardeniae fructus. Chem Pharm Bull 34:1419–1421

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa M, Izuhara R, Kaneko K et al (1987) 3-Caffeoyl-4-sinapoylquinic acid, a novel lipoxygenase inhibitor from Gardeniae fructus. Chem Pharm Bull 35:2133–2135

    Article  CAS  PubMed  Google Scholar 

  • Nissler L, Gebhardt R, Berger S (2004) Flavonoid binding to a multi-drug-resistance transporter protein: an STD-NMR study. Anal Bioanal Chem 379:1045–1049

    CAS  PubMed  Google Scholar 

  • Pandino G, Courts FL, Lombardo S et al (2010) Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J Agric Food Chem 58:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Pandino G, Lombardo S, Mauromicale G et al (2011a) Phenolic acids and flavonoids in leaf and floral stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chem 126:417–442

    Article  CAS  Google Scholar 

  • Pandino G, Lombardo S, Mauromicale G et al (2011b) Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. J Food Compos Anal 24:148–153

    Article  CAS  Google Scholar 

  • Pandino G, Lombardo S, Mauromicale G (2013) Globe artichoke leaves and floral stems as a source of bioactive compounds. Ind Crop Prod 44:44–49

    Article  CAS  Google Scholar 

  • Panizzi L, Scarpati ML (1954) Constitution of cynarine, the active principle of the artichoke. Nature 174:1062–1063

    Article  CAS  Google Scholar 

  • Pérez-García F, Adzet T, Cañigueral S (2000) Activity of artichoke leaf extract on reactive oxygen species in human leukocytes. Free Radic Res 33(5):661–665

    Article  PubMed  Google Scholar 

  • Pifferi PG, Vaccari A (1978) Studi sui pigmenti naturali. X. Gli antociani del carciofo (Cynara scolymus L.). Ind Conserv 55:107–110

    Google Scholar 

  • Pignone D, Sonnante G (2004) Wild artichokes of south Italy: did the story begin here? Genet Resour Crop Evol 51(6):577–580

    Article  Google Scholar 

  • Pignone D, Sonnante G (2009) Origine ed evoluzione. In: Calabrese N (ed) Il carciofo e il cardo. Script, Bologna, pp 2–11

    Google Scholar 

  • Pool-Zobel BL (2005) Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br J Nutr 93(1):73–90

    Article  Google Scholar 

  • Pool-Zobel B, Van Loo J, Rowland I et al (2002) Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Br J Nutr 87(2):273–281

    Article  Google Scholar 

  • Portis E, Mauromicale G, Barchi L et al (2005) Population structure and genetic variation in autochthonous globe artichoke germplasm from Sicily Island. Plant Sci 168:1591–1598

    Article  CAS  Google Scholar 

  • Preziosi P, Loscalzo B, Marmo E (1959) Comparison of choleretic effects of CYN and Na-dehydrocholate. Experientia 15:135–138

    Article  CAS  PubMed  Google Scholar 

  • Raccuia SA, Melilli MG, Scandurra S (2004) Potential utilisation of globe artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hegi] crop residues: biomass for energy and roots for inulin production. Acta Hortic 660:607–613

    Article  Google Scholar 

  • Ramos PAB, Guerra ÂR, Guerreiro O et al (2013) Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds. J Agric Food Chem 61:8420–8429

    Article  CAS  PubMed  Google Scholar 

  • Ramos PAB, Santos SAO, Guerra ÂR et al (2014) Phenolic composition and antioxidant activity of different morphological parts of Cynara cardunculus L. var. altilis (DC). Ind Crop Prod 61:460–471

    Article  CAS  Google Scholar 

  • Robenfroid MB (1999) Concepts in functional foods: the case of inulin and oligofructose. J Nutr 129:1398S–1401S

    Google Scholar 

  • Robinson WE, Cordeiro JRM, Abdel-Malek S et al (1996) Dicaffeoylquinic acid inhibitors of human immunodeficiency virus integrase: inhibition of the core catalytic domain of human immunodeficiency virus integrase. Mol Pharmacol 50(4):846–855

    CAS  PubMed  Google Scholar 

  • Romani A, Pinelli P, Cantini C et al (2006) Characterization of Violetto di Toscana, a typical Italian variety of artichoke (Cynara scolymus L.). Food Chem 95:221–225

    Article  CAS  Google Scholar 

  • Rossoni G, Grande S, Galli C et al (2005) Wild artichoke prevents the age-associated loss of vasomotor function. J Agric Food Chem 53(26):10291–10296

    Article  CAS  PubMed  Google Scholar 

  • Rottenberg A, Zohary D (1996) The wild ancestry of the cultivated artichoke. Genet Resour Crop Evol 43:53–58

    Article  Google Scholar 

  • Sánchez-Rabaneda F, Jáuregui O, Lamuela-Raventós RM et al (2003) Identification of phenolic compounds in artichoke waste by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1008:57–72

    Article  PubMed  Google Scholar 

  • Sato Y, Itagaki S, Kurokawa T et al (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403(1–2):136–138

    Article  CAS  PubMed  Google Scholar 

  • Schauenberg P, Paris F (1977) Guide to medicinal plants. Keats, New Canaan

    Google Scholar 

  • Schütz K, Kammerer D, Carle R et al (2004) Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and Pomace by HPLC–DAD–ESI/MS. J Agric Food Chem 52:4090–4096

    Article  PubMed  Google Scholar 

  • Schütz K, Persike M, Carle R et al (2006) Characterization and quantification of anthocyanins in selected artichoke (Cynara scolymus L.) cultivars by HPLC–DADESI–MSn. Anal Bioanal Chem 384:1511–1517

    Article  PubMed  Google Scholar 

  • Shimoda H, Ninomiya K, Nishida N et al (2003) Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. Bioorg Med Chem Lett 13:223–228

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27(6):962–978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonnante G, Carluccio AV, De Paolis A et al (2008) Identification of artichoke SSR markers: molecular variation and patterns of diversity in genetically cohesive taxa and wild allies. Genet Resour Crop Evol 55:1029–1046

    Article  CAS  Google Scholar 

  • Stewart ML, Timm DA, Slavin JL (2008) Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system. Nutr Res 28:329–334

    Article  CAS  PubMed  Google Scholar 

  • Suchy M, Herout V, Sorm F (1960) On terpenes—CVI: on hydrogenation products of cynaropicrin, the bitter principle of artichoke (Cynara scolymus L.). Collect Czech Chem C 25:507–513

    Article  CAS  Google Scholar 

  • Takemura T, Urushisaki T, Fukuoka M et al (2012) 3,4 Dicaffeoylquinic acid, a major constituent of Brazilian propolis, increases TRAIL expression and extends the life times of mice infected with the influenza A virus. Evid Based Complement Alternat Med 946867:1–7

    Article  Google Scholar 

  • Tanaka YT, Tanaka K, Kojima H et al (2013) Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorg Med Chem Lett 23:518–523

    Article  CAS  PubMed  Google Scholar 

  • Tárrega A, Rocafull A, Costell E (2010) Effect of blends of short and long-chain inulin on the rheological and sensory properties of prebiotic low-fat custards. Food Sci Technol 43:556–562

    Google Scholar 

  • Van Loo J, Cummings J, Delzenne N et al (1999) Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr 81:121–132

    Article  PubMed  Google Scholar 

  • Verpoorte R, Choi YH, Mustafa NR et al (2008) Metabolomics: back to basics. Phytochem Rev 7:525–537

    Article  CAS  Google Scholar 

  • Virdis A, Motzo R, Giunta F (2009) Key phenological events in globe artichoke (Cynara cardunculus var. scolymus) development. Ann Appl Biol 155(3):419–429

    Article  Google Scholar 

  • Virdis A, Motzo R, Giunta F (2014) The phenology of seed-propagated globe artichoke. Ann Appl Biol 164(1):128–137

    Article  Google Scholar 

  • Vitor CE, Figueiredo CP, Hara DB et al (2009) Therapeutic action and underlying mechanisms of a combination of two pentacyclic triterpenes, α- and β-amyrin, in a mouse model of colitis. Br J Pharmacol 157:1034–1044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang M, Simon JE, Aviles IF et al (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 51:601–608

    Article  CAS  PubMed  Google Scholar 

  • Xiao HB, Cao X, Wang L et al (2011) 1,5-dicaffeoylquinic acid protects primary neurons from amyloid β1-42-induced apoptosis via PI3K/Akt signaling pathway. Chin Med J 124:2628–2635

    CAS  PubMed  Google Scholar 

  • Yasukawa K, Kaminaga T, Kanno H (1996) Inhibitory effect of taraxastane-type triterpenes on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology 53(4):341–344

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa K, Matsubara H, Sano Y (2010) Inhibitory effect of the flowers of artichoke (Cynara cardunculus) on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin. J Nat Med 64:388–391

    Article  CAS  PubMed  Google Scholar 

  • Zha RP, Xu W, Wang WY et al (2007) Prevention of lipopolysaccharide-induced injury by 3,5-dicaffeoylquinic acid in endothelial cells. Acta Pharmacol Sin 28(8):1143–1148

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Zhang H, Lo R (2004) Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J Agric Food Chem 52:7272–7278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Lanzotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Falco, B., Incerti, G., Amato, M. et al. Artichoke: botanical, agronomical, phytochemical, and pharmacological overview. Phytochem Rev 14, 993–1018 (2015). https://doi.org/10.1007/s11101-015-9428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9428-y

Keywords