[go: up one dir, main page]

Skip to main content
Log in

Activity maps of multi-source mudslides from the Daunia Apennines (Apulia, southern Italy)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Multi-source mudslides are common in the Daunia Apennines, i.e., the Apulian sector of the Southern Apennines of Italy, and play an important role in the historical evolution of the landscape, with significant impact on the social and economic activities of the area. They also represent the most relevant geological hazard along the front of the Apennine Chain and expose to a considerable risk the local population and infrastructures. The outer sector of the Daunia Apennines is part of the foreland thrust belt system, made up of fissured fine-grained materials, belonging to the Daunia tectonic unit formations. Concerning landslide typology, the most frequent slope movements are represented by flows and composite mudslides, the latter typically starting as slumps evolving from flows. This paper deals with the production of landslide activity maps of three case studies of composite mudslides from the front of the Daunia Apennines. The maps were produced integrating traditional interpretation of multi-year aerial photograph coverage and field surveys with the available digital elevation models to analyze surface morphology. Each landslide activity map corresponds to multi-temporal landslide inventories compiled for the last 15–20 years. This paper outlined that in the last 20 years the front of the Daunia Apennines underwent a significant reactivation of slope failure phenomena after years of quiescence, or of limited activity. The three case studies clearly confirm that: (i) the active portions of the mudslides are located inside or near preexisting slope failures, and (ii) the spatial distribution of instability phenomena is strictly dependent upon the presence of older, larger and dormant, phenomena. Landslide activity maps are an important tool for the evaluation of landslide susceptibility and hazard in the study area, and for quantitative geomorphological analyses it aimed at understanding the long-term geomorphological evolution of this portion of the Southern Apennines. Moreover, we argue that high-quality multi-temporal inventories could have positive effects on all derivative products and analyses, including erosion studies and landscape modeling, susceptibility and hazard assessments, and risk evaluations as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Pieri et al. 1997). The red inset marks the area shown in c; c simplified geologic map of the foreland and thrust belt system in the northern Apulia region (modified and redrawn after Pieri et al. 2011)

Fig. 2
Fig. 3

source areas, showing outcrops of the Flysch di Faeto Fm.; b downhill view of the main flow, with presence in the central part of a pond; c lateral failure in materials of the Flysch Rosso Fm.; d view of the mudslide toe

Fig. 4
Fig. 5
Fig. 6

source areas and formation of a narrow flow above the old dormant mudslide mass. Shallow landsliding processes were active along the left flank. c Year 2011: there is continuation in the activity, and development of further active lateral flows on the left flank. Other source areas become active, too. d Year 2013: advancement of the main flow, whilst the activity in the lateral landslides seems decreasing. e Year 2015: overall decrease in activity, but with the main source areas and flow channel still active

Fig. 7
Fig. 8
Fig. 9

source areas and the formation of a narrow flow above the dormant area. Shallow landsliding processes were active along the left flank. c Year 2011: continuation in the activity, and development of active lateral flows on the left flank. d Year 2013: strong advancement of the main flow (about 250 m in two years). Other source areas become active, too. e Year 2015: same configuration as in 2013, with only minor changes detected during the field survey

Fig. 10
Fig. 11
Fig. 12
Fig. 13

source flow. Shallow landsliding processes are widened too. c Year 2006: advancement of the main flow, and development of small-sized active lateral flows on the left flank. d Year 2013: strong advancement of the main flow (about 400 m in 7 years). Other source areas become active too. e Year 2015: same configuration as in 2013, with only minor changes detected

Fig. 14

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

QGis freeware software website: https://www.qgis.org/en/site/.

References

  • Bruno G, Cherubini C, Ramunni FP (1992a) Fenomeni di cattura fluviale e condizioni di stabilità nel territorio di Castelluccio Valmaggiore (Puglia). Geol Rom 30:137–143

    Google Scholar 

  • Bruno G, Crescenzi E, Iovine G, Merenda L, Zezza F (1992b) Valutazioni di sicurezza idrogeologica e rischio da frana nei comuni dell’Appennino Dauno Pugliese. Un esempio: l’abitato di Pietra Montecorvino (FG). Geol Rom 30:581–588

    Google Scholar 

  • Canora F, Pellicani R, Spilotro G, Fidelibus MD, Gallicchio S (2012) Kinematics and evolution of Carlantino large landslide (Apulia, southern Italy).In: Eberhardt E et al (eds) Landslides and Engineered Slopes Protecting through improved understanding. CRC Press, Boca Raton, pp. 951–956

  • Casero R, Roure F, Endignoux L, Moretti I, Muller C, Sage L, Vially R (1988) Neogene geodinamic evolution of the southern Apennines. Mem Soc Geol It 41:109–120

    Google Scholar 

  • Chiocchio C, Iovine G, Parise M (1997) A proposal for surveying and classifying landslide damage to buildings in urban areas. Proceedings International Symposium on “Engineering geology and the environment.” Athens 1:553–558

    Google Scholar 

  • Ciaranfi N, Gallicchio S, Moretti M, Pieri P, Di Bari M, Piccarreta M, Del Gaudio V, Pierri P, Maggiore M, Fiore A, Iurilli V, Walsh N, Lopez N, Palombella M, Puigdevall I, Ricchetti E, Straziuso K, Capolongo D (2011) Note Illustrative della Carta della Pericolosità per Franosità alla scala 1: 50.000. F° 407 “San Bartolomeo in Galdo”. ISPRA–Servizio Geologico d’Italia.

  • Conforti M, Muto F, Rago V, Critelli S (2014) Landslide inventory map of north-eastern Calabria (South Italy). J Maps 10:90–102

    Google Scholar 

  • Cotecchia V (1963) I dissesti franosi del Subappennino Dauno con riguardo alle strade provinciali. La Capitanata 1:5–6

    Google Scholar 

  • Cotecchia F, Vitone C, Petti R, Soriamo I, Santaloia F, Lollino P (2016) Slow landslides in urbanised clayey slopes: an emblematic case from the south of Italy. In: Aversa S et al (eds) Landslides and engineered slopes. Experience, theory and practice. CRC Press, Boca Raton, pp 691–698

    Google Scholar 

  • Crescenzi E (1993) La carta delle frane della Tavoletta Pietra Montecorvino (FG). Geol Appl e Idrogeol 28:315–325

    Google Scholar 

  • Cruden D, Van Dine DF (2013) Classification, description, causes and indirect effects–Canadian technical guidelines and best practices related to landslides: a national initiative for loss reduction. Geol Survey Canada, Open File 7359:1–22

    Google Scholar 

  • Cruden D, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Transp res board sp rep 247. Nat Acad Press, WA, pp 36–75

    Google Scholar 

  • Dazzaro L, Rapisardi L (1984) Nuovi dati stratigrafici, tettonici e paleogeografici della parte settentrionale dell’Appennino Dauno. Boll Soc Geol It 103:51–58

    Google Scholar 

  • Dazzaro L, Rapisardi L (1987) Osservazioni geologiche sull’Appennino Dauno. Mem Soc Geol It 38:241–246

    Google Scholar 

  • Dazzaro L, Rapisardi L (1996) Schema geologico del margine appenninico tra il Fiume Fortore ed il Fiume Ofanto. Mem Soc Geol It, 51:143–147

  • Dazzaro L, Di Nocera S, Pescatore T, Rapisardi L, Romeo M, Russo B, Senatore MR, Torre M (1988) Geologia del margine della catena appenninica tra il Fiume Fortore ed il Torrente Calaggio (Monti della Daunia–Appennino meridionale). Mem Soc Geol It, 41:411–422

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslde susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:99–111

    Google Scholar 

  • Fleming RW, Johnson AM (1989) Structures associated with strike-slip faults that bound landslide elements. Eng Geol 27:39–114

    Google Scholar 

  • Gallicchio S, Moretti M, Spalluto L, Angelini S (2014) Geology of the middle and upper Pleistocene marine and continental terraces of the northern Tavoliere di Puglia plain (Apulia, southern Italy). J Maps 10:569–575

    Google Scholar 

  • Gioia D, Gallicchio S, Moretti M, Schiattarella M (2014) Landslide response to tectonic and climatic forcing in the foredeep of the southern Apennines, Italy: insights from Quaternary stratigraphy, quantitative geomorphic analysis, and denudation rate proxies. Earth Surf Proc Landf 39:814–835

    Google Scholar 

  • Giordan D, Allasia P, Manconi A, Balbo M, Santangelo M, Cardinali M, Corazza A, Albanese V, Lollino G, Guzzetti F (2013) Morphological and kinematic evolution of a large earthflow: the Montaguto landslide, southern Italy. Geomorphology 187:61–79

    Google Scholar 

  • Guerriero L, Revellino P, Coe JA, Focareta M, Grelle G, Albanese V, Corazza A, Guadagno FM (2013) Multi-temporal Maps of the Montaguto Earth Flow in Southern Italy from 1954 to 2010. J Maps 9:135–145

    Google Scholar 

  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazards Earth Syst Sci 6:115–131

    Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K (2012) Landslide inventory maps: new tools for an old problem. Earth-Sci Rev 112:42–66

    Google Scholar 

  • Hydrogeological Asset Plan (PAI) (2019) Basin Authority of Apulia Region (AdB). http://webgis.adb.puglia.it/gis/map_default.phtml

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosc 7:221–238

    Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2012) Varnes classification of landslide types, an update. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and engineered slopes: protecting society through improved understanding. Balkema, Rotterdam, pp 47–58

    Google Scholar 

  • IAEG Commission on Landslides (1990) Suggested nomenclature for landslides. Bull Int Ass Eng Geol 41:13–16

    Google Scholar 

  • Inventory of Instability Phenomena in the Apulia Region. (2006) Basin Authority of Apulia Region (AdB), http://webgis.adb.puglia.it/POR/map_default.phtml

  • Iovine G, Parise M (2002) Schema classificativo per il rilievo dei danni da frana in aree urbane. Mem Soc Geol It 57:595–603

    Google Scholar 

  • Iovine G, Parise M, Crescenzi E (1996) Analisi della franosità nel settore centrale dell’Appennino Dauno. Mem Soc Geol It 51:633–641

    Google Scholar 

  • Italian Landslide Inventory (IFFI Project) http://www.progettoiffi.isprambiente.it/cartanetiffi/carto3.asp?cat=40&lang=IT

  • Jacobacci A, Martelli G (1967) Note illustrative della Carta Geologica d’Italia, F° 174 “Ariano Irpino. Servizio Geologico d’Italia

  • Jacobacci A, Malatesta A, Martelli G, Stampanoni G (1967) Note Illustrative della Carta Geologica d’Italia, F° 163 “Lucera”. Servizio Geologico d’Italia

  • Lazzari M, Gioia D (2016) Regional-scale landslide inventory, central-western sector of the Basilicata region (Southern Apennines, Italy). J Maps 12:852–859

    Google Scholar 

  • Lazzari M, Gioia D, Anzidei B (2018) Landslide inventory of the Basilicata region (Southern Italy). J Maps 14:348–356

    Google Scholar 

  • Melidoro G (1971) Movimenti franosi e zonizzazione del bacino del F. Fortore Geol App e Idrogeol 6:17–40

    Google Scholar 

  • Moretti M, Gallicchio S, Spalluto L (2010) Evoluzione geologica del settore settentrionale del Tavoliere di Puglia (Italia meridionale) nel Pleistocene medio e superiore. Il Quaternario 23:181–198

    Google Scholar 

  • Mostardini F, Merlini S (1986) Appennino centro-meridionale. Sezioni geologiche e proposta di modello strutturale. Mem Soc Geol It 35:177–202

    Google Scholar 

  • National Geoportal of the Italian Ministry of Environment, Land and Sea. Webgis (http://www.pcn.minambiente.it/GN/)

  • Parise M (2001) Landslide mapping techniques and their use in the assessment of the landslide hazard. J Phys Chem Earth Part C 26(9):697–703

    Google Scholar 

  • Parise M (2003a) Considerazioni sulla franosità dell’Appennino dauno (Puglia), sulla base dell’elaborazione di carte di attività delle frane. Quad di Geol Appl 10:133–145

    Google Scholar 

  • Parise M (2003b) Observation of surface features on an active landslide, and implications for understanding its history of movement. Nat Hazards Earth System Sc 3(6):569–580

    Google Scholar 

  • Parise M, Wasowski J (1999) Use of landslide activity map for the evaluation of landslide hazard: three case studies from southern Italy. Nat Hazards 20:159–183

    Google Scholar 

  • Parise M, Federico A, Palladino G (2012) Historical evolution of multi-source mudslides. Landslides and engineered slopes. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and engineered slopes: protecting society through improved understanding. Balkema, Rotterdam, pp 401–407

    Google Scholar 

  • Parise M, Coe JA, Savage WZ, Varnes DJ (2003) The Slumgullion landslide (southwestern Colorado, USA): investigation and monitoring. In: Picarelli L (eds), Proc Int Workshop Occurrence and mechanisms of flow-like landslides in natural slopes and earthfills, Patron, Bologna, pp. 253–263

  • Patacca E, Scandone P (2007) Geology of the Southern Apennines. Boll Soc Geol It, Spec Issue 7:75–119

    Google Scholar 

  • Patacca E, Sartori R, Scandone P (1990) Tyrrhenian basin and apenninic arcs: kinematic relations since late Tortonian times. Mem Soc Geol It 45:425–451

    Google Scholar 

  • Pellegrino A, Picarelli L, Urciuoli G (2003) Experiences of mudslides in Italy. In: Picarelli L (ed), Proc. Int. Workshop Occurrence and mechanisms of flow-like landslides in natural slopes and earthfills, Patron, Bologna, pp. 191–206

  • Pellicani R, Spilotro G (2014) Evaluating the quality of landslide inventory maps: comparison between archive and surveyed inventories for Daunia region (Apulia, Southern Italy). Bull Eng Geol Env 74:357–367

    Google Scholar 

  • Pennetta L (2007) Cap. 21: Analisi del dissesto da frana in Puglia. In: Rapporto sulle frane in Italia. Il Rapporto IFFI–Metodologia, risultati e rapporti regionali. Apat, pp 547–576

  • Pescatore T, Renda P, Schiattarella M, Tramutoli M (1999) Stratigraphic and structural relationship between Meso-Cenozoic Lagonegro basin and coeval carbonate platforms in southern Apennines, Italy. Tectonophysics 315:269–286

    Google Scholar 

  • Pieri P, Festa V, Moretti M, Tropeano M (1997) Quaternary tectonic activity of the Murge area (Apulian foreland-southern Italy). Ann Geofis 40:1395–1404

    Google Scholar 

  • Pieri P, Gallicchio S, Moretti M (2011) Note Illustrative della Carta Geologica d’Italia alla scala 1: 50.000. F° 407 “San Bartolomeo in Galdo”. ISPRA, Servizio Geologico d’Italia

  • Pisano L, Zumpano V, Malek Z, Rosskopf CM, Parise M (2017) Variations in the susceptibility to landslides, as a consequence of land cover changes: a look to the past, and another towards the future. Sci Total Environ 601–602:1147–1159

    Google Scholar 

  • Puglia.con (Apulia Region website for the knowledge ot the territory) (2020) SIT Puglia. http://www.sit.puglia.it

  • Refice A, Spalluto L, Bovenga F, Fiore A, Miccoli MN, Muzzicato P, Nitti DO, Nutricato R, Pasquariello G (2019) Integration of persistent scatterer interferometry and ground data for landslide monitoring: the Pianello landslide (Bovino, Southern Italy). Landslides 16:447–468

    Google Scholar 

  • Santangelo M, Gioia D, Cardinali M, Guzzetti F, Schiattarella M (2013) Interplay between mass movement and fluvial network organization: an example from southern Apennines, Italy. Geomorphology 188:54–67

    Google Scholar 

  • Scandone P, Mazzotti A, Fradelizio GL, Patacca E, Stucchi E, Tozzi M, Zanzi I (2003) Line Crop 04: southern Apennines. Mem Descr Carta Geol d’It 62:155–166

    Google Scholar 

  • Sella M, Turci C, Riva A (1988) Sintesi geopetrolifera della Fossa Bradanica (avanfossa della catena appenninica meridionale). Mem Soc Geol It 41:87–107

    Google Scholar 

  • Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation transp res board sp rep 247. Nat Acad Press, WA, pp 129–177

    Google Scholar 

  • Spalluto L, Moretti M (2006) Evidenze di neotettonica (Pliocene medio-Pleistocene superiore) nel settore occidentale del Promontorio del Gargano (Italia meridionale). Il Quaternario 19:143–154

    Google Scholar 

  • Spalluto L, Fiore A, Miccoli MN (2015) Mappe di attività delle frane: analisi della riattivazione di alcuni dissesti idrogeologici in Appennino Dauno. Geologi e Territorio 2:3–17

    Google Scholar 

  • Spilotro G, Gallicchio S, Pellicani R, Diprizio G(2016) A basic geothematic map for land planning and modeling (Daunian Subapennine–Apulia Region, Italy). ICCSA 2016 16th International Conference, Beijing, China, July 4–7 2016, Proceedings Part III 9877. Springer International Publishing, Switzerlan, pp. 107–119

  • Varnes DJ (1978) Slope movements types and processes. In: Schuster RL, Krizek RJ (eds) Landslides: analysis and control. Transportation research board. National Academy of Science spec rep, Karnataka, pp 11–35

    Google Scholar 

  • Van Western CJ, van Asch TWJ, Soeters R (2005) Landslide hazard and risk zonation: why is it still so difficult? Bull of Eng Geol 65:167–184

    Google Scholar 

  • Wasowski J, Pisano L (2020) Long-term InSAR, borehole inclinometer, and rainfall records provide insight into the mechanism and activity patterns of an extremely slow urbanized landslide. Landslides 17:445–457

    Google Scholar 

  • Wasowski J, Casarano D, Lamanna C (2007) Is the current landslide activity in the Daunia region (Italy) controlled by climate or land use change? In: McInnes J, Fairbank M (eds) Landslide and climate change. Taylor & Francis Group, London, pp 41–49

    Google Scholar 

  • Working Party on World Landslide Inventory (WP/WLI) (1993) A suggested method for describing the activity of a landslide. Bull Int Ass Eng Geol 47:53–57

    Google Scholar 

  • Zezza F, Merenda L, Bruno G, Crescenzi E, Iovine G (1994) Condizioni di instabilità e rischio da frana nei comuni dell’Appennino Dauno Pugliese. Geol App e Idrogeo 29:77–141

    Google Scholar 

  • Zumpano V, Pisano L, Malek Z, Micu M, Aucelli PCC, Rosskopf CM, Balteanu D, Parise M (2018) Economic losses for rural land value due to landslides. Frontiers in Earth Science 6:97. https://doi.org/10.3389/feart.2018.00097

    Article  Google Scholar 

  • Zumpano V, Ardizzone F, Bucci F, Cardinali M, Fiorucci F, Parise M, Pisano L, Reichenbach P, Santaloia F, Santangelo M, Wasowski J, Lollino P (2020) The relation of spatio-temporal distribution of landslides to urban development (a case study from the Apulia region, Southern Italy). J Maps. https://doi.org/10.1080/17445647.2020.1746417

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers and the Editor in Chief James Goff for their criticisms and suggestions that definitely improved the overall quality of the paper.

Funding

This research was supported by the POR-Puglia 2014–2020 project: “Monitoring geomorphological instability processes due to natural or anthropogenic phenomena in the Apulia region” grant to Autorità di Bacino Distrettuale dell’Appennino meridionale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Spalluto.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spalluto, L., Fiore, A., Miccoli, M.N. et al. Activity maps of multi-source mudslides from the Daunia Apennines (Apulia, southern Italy). Nat Hazards 106, 277–301 (2021). https://doi.org/10.1007/s11069-020-04461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-020-04461-3

Keywords

Navigation