[go: up one dir, main page]

Skip to main content
Log in

Extended \(H_{\infty }\) Synchronization Control for Switched Neural Networks with Multi Quantization Densities Based on a Persistent Dwell-Time Approach

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper thoroughly investigates the synchronization control issue for the switched neural networks. The more comprehensive comparatively switching rule, persistent dwell-time, is applied to actuate the aforementioned neural networks. For tackling the problem caused by the transmission of tremendous data, the quantizer is utilized. The objective is to establish the mixed controller with multi quantization densities for the synchronization error neural networks to meet the various accuracy requirements of the transmitted data. Whereafter, the sufficient conditions of the extended \(H_{\infty }\) performance and global uniform exponential stability for the synchronization error neural networks are constructed. Conclusively, the capability of the proposed mixed controller is elucidated through a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arik S (2002) An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans Neural Netw 13(5):1239–1242

    Article  Google Scholar 

  2. Cheng L, Hou Z-G, Tan M, Lin Y, Zhang W (2010) Neural-network-based adaptive leader-following control for multiagent systems with uncertainties. IEEE Trans Neural Netw 21(8):1351–1358

    Article  Google Scholar 

  3. Balasubramaniam P, Vembarasan V, Rakkiyappan R (2011) Leakage delays in T–S fuzzy cellular neural networks. Neural Process Lett 33(2):111–136

    Article  Google Scholar 

  4. Jiao S, Shen H, Wei Y, Huang X, Wang Z (2018) Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays. Appl Math Comput 336:338–350

    Article  MathSciNet  Google Scholar 

  5. Shen B, Wang Z, Liu X (2011) Bounded \( H_{\infty }\) synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon. IEEE Trans Neural Netw 22(1):145–157

    Article  Google Scholar 

  6. Huang H, Feng G, Cao J (2008) Robust state estimation for uncertain neural networks with time-varying delay. IEEE Trans Neural Netw 19(8):1329–1339

    Article  Google Scholar 

  7. Hu J, Wang Z, Liu S, Gao H (2016) A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements. Automatica 64:155–162

    Article  MathSciNet  Google Scholar 

  8. Shen H, Huo S, Cao J, Huang T (2019) Generalized state estimation for Markovian coupled networks under round-robin protocol and redundant channels. IEEE Trans Cybern 49(4):1292–1301

    Article  Google Scholar 

  9. Yang X, Cao J, Lu J (2013) Synchronization of randomly coupled neural networks with Markovian jumping and time-delay. IEEE Trans Circuits Syst I Regul Pap 60(2):363–376

    Article  MathSciNet  Google Scholar 

  10. Yang X, Cao J, Yang Z (2013) Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J Control Optim 51(5):3486–3510

    Article  MathSciNet  Google Scholar 

  11. Yang X, Lu J (2016) Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans Autom Control 61(8):2256–2261

    Article  MathSciNet  Google Scholar 

  12. Yang X, Cao J, Lu J (2016) Synchronization of Markovian coupled neural networks with nonidentical node-delays and random coupling strengths. IEEE Trans Neural Netw Learn Syst 23(1):60–71

    Article  Google Scholar 

  13. Shen H, Wang T, Cao J, Lu G, Song Y, Huang T (2019) Non-fragile dissipative synchronization for Markovian memristive neural networks: a gain-scheduled control scheme. IEEE Trans Neural Netw Learn Syst 30(6):1841–1853

    Article  MathSciNet  Google Scholar 

  14. Cheng J, Park J, Karimi H, Shen H (2018) A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans Cybern 48(8):2232–2244

    Article  Google Scholar 

  15. Ge C, Wang B, Wei X, Liu Y (2017) Exponential synchronization of a class of neural networks with sampled-data control. Appl Math Comput 315:150–161

    MathSciNet  MATH  Google Scholar 

  16. Shen H, Li F, Wu Z, Park J, Sreeram V (2018) Fuzzy-model-based non-fragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters. IEEE Trans Fuzzy Syst 26(6):3428–3439

    Article  Google Scholar 

  17. Huang Z, Xia J, Wang J, Wei Y, Wang Z, Wang J (2019) Mixed \(H_{\infty }/l_{2}\)\(l_{\infty }\) state estimation for switched genetic regulatory networks subject to packet dropouts: a persistent dwell-time switching mechanism. Appl Math Comput 355(15):198–212

    MathSciNet  Google Scholar 

  18. Shen H, Huang Z, Cao J, Park J (2019) Exponential \(\cal{H}_{\infty }\) filtering for continuous-time switched neural networks under persistent dwell-time switching regularity. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2901867 (in press)

    Article  Google Scholar 

  19. Shen H, Xing M, Yan H, Park J (2018) Extended dissipative filtering for persistent dwell-time switched systems with packet dropouts. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2018.2866632 (in press)

    Article  Google Scholar 

  20. Hespanha JP (2004) Uniform stability of switched linear systems: extensions of LaSalle’s invariance principle. IEEE Trans Autom Control 49(4):470–482

    Article  MathSciNet  Google Scholar 

  21. Morse AS (1996) Supervisory control of families of linear set-point controllers—part I. Exact matching. IEEE Trans Autom Control 41(10):1413–1431

    Article  Google Scholar 

  22. Cheng J, Park JH, Cao J, Zhang D (2018) Quantized \(H_{\infty }\) filtering for switched linear parameter-varying systems with sojourn probabilities and unreliable communication channels. Inf Sci 466:289–302

    Article  Google Scholar 

  23. Hespanha JP, Morse AS (1999) Stability of switched systems with average dwell-time. In: Proceedings of the 38th IEEE conference on decision and control, 1999, vol 3, pp 2655–2660

  24. Zhang L, Zhuang S, Shi P (2015) Non-weighted quasi-time-dependent \(H_{\infty }\) filtering for switched linear systems with persistent dwell-time. Automatica 54:201–209

    Article  MathSciNet  Google Scholar 

  25. Wang Y, Ma Y, Chen A (2018) Exponential synchronization of Markovian jump complex dynamical networks with partially uncertain transition rates and stochastic disturbances. Neurocomputing 304:30–46

    Article  Google Scholar 

  26. Zhang W, Yang S, Li C, Zhang W, Yang X (2018) Stochastic exponential synchronization of memristive neural networks with time-varying delays via quantized control. Neural Netw 104:93–103

    Article  Google Scholar 

  27. Zhang W, Li C, Yang S, Yang X (2018) Synchronization criteria for neural networks with proportional delays via quantized control. Nonlinear Dyn 94(1):541–551

    Article  Google Scholar 

  28. Zhang W, Li C, Yang S, Yang X (2018) Finite-time synchronization of delayed memristive neural networks via 1-norm-based analytical approach. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3906-2 (in press)

    Article  Google Scholar 

  29. Sun W, Zhang L, Wang D, Cheng Y, Wang Y (2018) Stability and \(H_{\infty }\) control of systems with variable quantization density in both input and output channels. In: 2018 Eighth international conference on information science and technology (ICIST). IEEE, pp 307–313

  30. Wang J, Liu C (2018) Stabilization of uncertain systems with Markovian modes of time delay and quantization density. IEEE/CAA J Autom Sin 5(2):463–470

    Article  MathSciNet  Google Scholar 

  31. Wan X, Fang H (2013) Fault detection for discrete-time networked nonlinear systems with incomplete measurements. Int J Syst Sci 44(11):2068–2081

    Article  MathSciNet  Google Scholar 

  32. Yan H, Sun J, Zhang H, Zhan X, Yang F (2018) Event-triggered \(H_{\infty }\) state estimation of 2-DOF quarter-car suspension systems with nonhomogeneous Markov switching. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2018.2852688 (in press)

    Article  Google Scholar 

  33. Ren H, Lu R, Xiong J, Xu Y (2018) Optimal estimation for discrete-time linear system with communication constraints and measurement quantization. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2018.2792009 (in press)

    Article  Google Scholar 

  34. Shen H, Men Y, Wu ZG, Cao J, Lu G (2019) Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application. IEEE Trans Circuits Syst I Regul Pap 66(3):1130–1140

    Article  Google Scholar 

  35. Ge C, Wang H, Liu Y, Park J (2018) Stabilization of chaotic systems under variable sampling and state quantized controller. Fuzzy Sets Syst 344(4):129–144

    Article  MathSciNet  Google Scholar 

  36. Wang S, Yu M, Wang H, Tan W (2014) Switched quantization level control of networked control systems with packet dropouts. Math Probl Eng. Article ID 890543, 8

  37. Shen H, Huang Z, Yang X, Wang Z (2018) Quantized energy-to-peak state estimation for persistent dwell-time switched neural networks with packet dropouts. Nonlinear Dyn 93(4):2249–2262

    Article  Google Scholar 

  38. Fu M, Xie L (2005) The sector bound approach to quantized feedback control. IEEE Trans Autom Control 50(11):1698–1711

    Article  MathSciNet  Google Scholar 

  39. Liberzon D (2003) Switching in systems and control. Springer, Berlin

    Book  Google Scholar 

  40. Wang Y, Xie L, De Souza CE (1992) Robust control of a class of uncertain nonlinear systems. Syst Control Lett 19(2):139–149

    Article  MathSciNet  Google Scholar 

  41. Zhang L, Zhu Y, Shi P, Lu Q (2016) Time-dependent switched discrete-time linear systems: control and filtering. Springer, Berlin

    Book  Google Scholar 

  42. Li F, Shen H (2015) Finite-time \(\cal{H}_{\infty }\) synchronization control for semi-Markov jump delayed neural networks with randomly occurring uncertainties. Neurocomputing 166:447–454

    Article  Google Scholar 

  43. Ding S, Li S (2017) Second-order sliding mode controller design subject to mismatched term. Automatica 77:388–392

    Article  MathSciNet  Google Scholar 

  44. Ding S, Zheng W, Sun J, Wang J (2018) Second-order sliding mode controller design and its implementation for buck converters. IEEE Trans Ind Inform 14(5):1990–2000

    Article  Google Scholar 

  45. Qi W, Zong G, Karimi H (2018) Observer-based adaptive SMC for nonlinear uncertain singular semi-Markov jump systems with applications to DC motor. IEEE Trans Circuits Syst I Regul Pap 65(9):2951–2960

    Article  MathSciNet  Google Scholar 

  46. Du H, Yu X, Chen MZQ, Li S (2017) Chattering-free discrete-time sliding mode control. Automatica 77:388–392

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61304066, 61573008, 61473178, 61703004, the Natural Science Foundation of Anhui Province under Grant 1708085MF165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Shen, H., Xia, J. et al. Extended \(H_{\infty }\) Synchronization Control for Switched Neural Networks with Multi Quantization Densities Based on a Persistent Dwell-Time Approach. Neural Process Lett 50, 2821–2841 (2019). https://doi.org/10.1007/s11063-019-10064-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10064-2

Keywords

Navigation