[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Differentially Expressed Genes of the Slc6a Family as Markers of Altered Brain Neurotransmitter System Function in Pathological States in Mice

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The neuromolecular mechanisms forming behavioral pathology developing in male mice in response to repeated experience of aggression and mixed anxiety-depressive disorder due to chronic social stress were studied. These studies tested the suggestion that altered expression of genes of the Slc6a family, which encode monoamine, GABA, taurine, glycine, and other amino acid transporter proteins can be used as an indicator of changes in the operation of the neurotransmitter systems in five parts of the brain involved in the processes forming pathological forms of behavior. The transcriptomes of brain areas in control, aggressive, and depressive mice were sequenced at Genoanalytica (http://genoanalytica.ru/, Moscow, Russia). The analysis results (RNA-Seq) identified different changes in the expression of the transporter genes the Slc6a family depending on brain area, behavioral pathology, and the functions of the protein encoded by the corresponding genes. In particular, increases in the expression of most GABAergic Slc6a genes were seen in the hypothalamus, hippocampus, and striatum in depressive mice and in the hypothalamus of aggressive males. The midbrain raphe nuclei and ventral tegmental area showed specific and opposite changes in the expression of the monoaminergic genes. These data lead to the conclusion that the altered expression of the Slc6a genes, encoding the corresponding transporters, may serve as a marker for changes in the functions of the neurotransmitter systems in pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avgustinovich, D. F., Alekseenko, O. V., Bakshtanovskaya, I. V., et al., “Dynamic changes in serotoninergic and dopaminergic brain activity during the development of anxious depression: an experimental study,” Usp. Fiziol. Nauk., 35, No. 4, 19–40 (2004).

    CAS  PubMed  Google Scholar 

  • Avgustinovich, D. F., Kovalenko, I. L., and Kudryavtseva N. N., “A model of anxious depression: persistence of behavioral pathology,” Neurosci. Behav. Physiol., 35, No. 9, 917–924 (2005).

    CAS  PubMed  Google Scholar 

  • Bak, L. K., Schousboe, A., and Waagepetersen, H. S., “The glutamate/GABA glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer,” J. Neurochem., 98, 641–653 (2006).

    CAS  PubMed  Google Scholar 

  • Barker, D. J., Root, D. H., Zhang, S., and Morales, M., “Multiplexed neurochemical signaling by neurons of the ventral tegmental area,” J. Chem. Neuroanat., 73, 33–42 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berton, O., McClung, C. A., Dileone, R. J., et al., “Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress,” Science, 311, No. 5762, 864–868 (2006).

    CAS  PubMed  Google Scholar 

  • Bondar, N. P., Boyarskikh, U. A., Kovalenko, I. L., et al., “Molecular implications of repeated aggression: Th, Dat1, Snca and Bdnf gene expression in the VTA of victorious male mice,” PLoS One, 4, No. 1, e4190 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Bourdy, R. and Barrot, M., “A new control center for dopaminergic systems: pulling the VTA by the tail,” Trends Neurosci., 35, No. 11, 681–690 (2012).

    CAS  PubMed  Google Scholar 

  • Boyarskikh, U. A., Bondar, N. P., Filipenko, M. L., and Kudryavtseva N. N., “Downregulation of serotonergic genes expression in the raphe nuclei of midbrain under chronic social defeat stress in male mice,” Mol. Neurobiol., 48, No. 1, 13–21 (2013).

    CAS  PubMed  Google Scholar 

  • Carkaci-Salli, N., Salli, U., Kuntz-Melcavage, K. L., et al., “TPH2 in the ventral tegmental area of the male rat brain,” Brain Res. Bull., 84, No. 6, 376–380 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrey, N. J., MacMaster, F. P., Gaudet, L., and Schmidt M. H., “Striatal creatine and glutamate/glutamine in attention-deficit/hyperactivity disorder,” J. Child Adolesc. Psychopharmacol., 17, No. 1, 11–17 (2007).

    PubMed  Google Scholar 

  • Chen, N. H., Reith, M. E., and Quick M. W., “Synaptic uptake and beyond: the sodium-and chloride-dependent neurotransmitter transporter family SLC6,” Pflügers Arch., 447, 519–531 (2004).

    CAS  PubMed  Google Scholar 

  • Devan, B. D., Hong, N. S., and McDonald R. J., “Parallel associative processing in the dorsal striatum: Segregation of stimulus-response and cognitive control subregions,” Neurobiol. Learn. Mem., 96, 95–120 (2011).

    PubMed  Google Scholar 

  • Fields, H. L., Hjelmstad, G. O., Margolis, E. B., and Nicola S. M., “Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement,” Annu. Rev. Neurosci., 30, 289–316 (2007).

    CAS  PubMed  Google Scholar 

  • Filipenko, M. L., Alekseyenko, O. V., Beilina, A. G., et al., “Increase of tyrosine hydroxylase and dopamine transporter mRNA levels in ventral tegmental area of male mice under influence of repeated aggression experience,” Mol. Brain Res., 96, No. 1–2, 77–81 (2001).

    CAS  PubMed  Google Scholar 

  • Fowler, J. S., Volkow, N. D., Wang, G. J., et al., “PET and drug research and development,” J. Nucl. Med., 40, 1154–1163 (1999).

    CAS  PubMed  Google Scholar 

  • Fredriksson, R., Nordstrom, K. J., Stephansson, O., et al., “The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families,” FEBS Lett., 582, 3811–3816 (2008).

    CAS  PubMed  Google Scholar 

  • Galyamina, A. G., Kovalenko, I. L., Smagin, D. A., and Kudryavtseva N. N., “Changes in the expression of neurotransmitter system genes in the ventral tegmental area in depressive mice: RNA-Seq data,” Zh. Vyssh. Nerv. Deyat., 67, No. 1, 113–118 (2017).

    CAS  Google Scholar 

  • Grace A. A., “Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia,” Neuroscience, 41, No. 1, 1–24 (1991).

    CAS  PubMed  Google Scholar 

  • He, L., Vasiliou, K., and Nebert D. W., “Analysis and update of the human solute carrier (SLC) gene superfamily,” Hum. Genomics, 3, 195–206 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hediger, M. A., Romero, M. F., Peng, J. B., et al., “The ABCs of solute carriers: physiological, pathological, and therapeutic implications of human membrane transport proteins,” Pflügers Arch., 447, 465–468 (2004).

    CAS  PubMed  Google Scholar 

  • Herve, D., Pickel, V. M., Joh, T. H., and Beaudet, A., “Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons,” Brain Res., 435, No. 1–2, 71–83 (1987).

    CAS  PubMed  Google Scholar 

  • Houle, S., Ginovart, N., Hussey, D., et al., “Imaging the serotonin transporter with positron emission tomography: initial human studies with DAPP and DASB,” Eur. J. Nucl. Med., 27, 1719–1722 (2000).

    CAS  PubMed  Google Scholar 

  • Huang, Y., Hwang, D. R., Narendran, R., et al., “Comparative evaluation in nonhuman primates of five PET radiotracers for imaging the serotonin transporters: McN 5652, ADAM, DASB, DAPA, and AFM,” J. Cereb. Blood Flow Metab., 22, 1377–1398 (2002).

    CAS  PubMed  Google Scholar 

  • Kandel E. R., “The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB,” Mol. Brain, 5, 14 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovalenko, I. L., Smagin, D. A., Galyamina, A. G., et al., “Changes in the expression of dopaminergic genes in brain structures in male mice on exposure to chronic social stress: RNA-data,” Mol. Biol., 50, No. 1, 184–187 (2016).

    CAS  Google Scholar 

  • Kristensen, A. S., Andersen, J., Jørgensen, T. N., et al., “SLC6 Neurotransmitter transporters: structure, function, and Regulation,” Pharmacol. Rev., 63, 585–640 (2011).

    CAS  PubMed  Google Scholar 

  • Kudryavtseva N. N., “The psychopathology of repeated aggression: a neurobiological aspect,” in: Perspectives on the Psychology of Aggression, J. P. Morgan (ed.), Nova Science Publishers, Inc., New York (2006), Chpt. 2, pp. 35–64.

  • Kudryavtseva N. N., “The sensory contact model for the study of aggressive and submissive behaviors in male mice,” Aggress. Behav., 17, No. 5, 285–291 (1991).

    Google Scholar 

  • Kudryavtseva N. N., The Neurobiology of Aggression: Mice and Men: Monograph, Science Center Press, (2013).

  • Kudryavtseva, N. N. and Avgustinovich D. F., “Behavioral and physiological markers of experimental depression induced by social conflicts (DISC),” Aggress. Behav., 24, 271–286 (1998).

    Google Scholar 

  • Kudryavtseva, N. N. and Bakshtanovskaya I. V., “Neurochemical control of aggression and submission,” Zh. Vyssh. Nerv. Deyat., 41, No. 5, 459–466 (1991).

    CAS  Google Scholar 

  • Kudryavtseva, N. N., Bakshtanovskaya, I. V., and Koryakina, L. A., “Social model of depression in mice of C57BL/6J strain,” Pharmacol. Biochem. Behav., 38, No. 2, 315–320 (1991).

    CAS  PubMed  Google Scholar 

  • Kudryavtseva, N. N., Bondar, N. P., and Avgustinovich D. F., “Association between experience of aggression and anxiety in male mice,” Behav. Brain Res., 133, No. 1, 83–93 (2002).

    PubMed  Google Scholar 

  • Kudryavtseva, N. N., Smagin, D. A., Kovalenko, I. L., and Vishnivetskaya G. B., “Repeated positive fighting experience in male mice,” Nature Prot., 9, No. 11, 2705–2717 DOI: https://doi.org/10.1038/nprot.2014.156 (2014).

    Article  Google Scholar 

  • Kudryavtseva, N. N., Smagin, D. A., Kovalenko, I. L., et al., “Serotoninergic genes in the development of anxiety-depressive disorders and aggressive behavioral pathology in male mice: RNA-Seq data,” Mol. Biol., 51, No. 2, 288–300 (2017).

    CAS  Google Scholar 

  • Laakso, A. and Hietala, J., “PET studies of brain monoamine transporters,” Curr. Pharm. Des., 6, 1611–1623 (2000).

    CAS  PubMed  Google Scholar 

  • Liljeholm, M. and O’Doherty J. P., “Contributions of the striatum to learning, motivation, and performance: an associative account,” Trends Cogn. Sci., 16, No. 9, 467–475 (2012).

    PubMed  PubMed Central  Google Scholar 

  • Margolis, E. B., Lock, H., Hjelmstad, G. O., and Fields H. L., “The ventral tegmental area revisited: Is there an electrophysiological marker for dopaminergic neurons?” J. Physiol., 577, No. 3, 907–924 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer J. H., “Imaging the serotonin transporter during major depressive disorder and antidepressant treatment,” J. Psychiatry Neurosci., 32, 86–102 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Nair-Roberts, R. G., Chatelain-Badie, S. D., Benson, E., et al., “Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat,” Neuroscience, 152, 1024–1031 (2008).

    CAS  PubMed  Google Scholar 

  • Polter, A. M. and Kauer J. A., “Stress and VTA synapses: implications for addiction and depression,” Eur. J. Neurosci., 39, No. 7, 1179–1188 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Rayman, J. B. and Kandel E. R., “Functional prions in the brain,” Cold Spring Harb. Perspect. Biol., 9, No. 1 (2017).

  • Russo, S. J. and Nestler E. J., “The brain reward circuitry in mood disorders,” Nat. Rev. Neurosci., 14, No. 9, 609–625 (2013).

    CAS  PubMed  Google Scholar 

  • Smagin, D. A., Boyarskikh, U. A., Bondar, N. P., et al., “Reduction of serotonergic gene expression in the midbrain raphe nuclei under positive fighting experience,” Adv. Biosci. Biotech., 4, No. 10B, 36–44 (2013).

    CAS  Google Scholar 

  • Smagin, D. A., Galyamina, A. G., Kovalenko, I. L., et al., “Differentially expressed genes for neurotransmitter systems in the dorsal striatum of male mice with motor impairments,” Zh. Vyssh. Nerv. Deyat., 68, No. 2, 227–249 (2018).

    Google Scholar 

  • Smagin, D. A., Galyamina, A. G., Kovalenko, I. L., et al., “Aberrant expression of collagen family genes in the brain regions developing under agonistic interactions in male mice: RNA-Seq data,” BioRxiv, DOI: https://doi.org/10.1101/276063 (2018b).

  • Smagin, D. A., Kovalenko, I. L., Galyamina, A. G., et al., “Dysfunction in ribosomal gene expression in the hypothalamus and hippocampus following chronic social defeat stress in male mice as revealed by RNA-Seq,” Neural Plast., 3289187 (2016).

  • Smagin, D. A., Kovalenko, I. L., Galyamina, A. G., et al., “Heterogeneity of brain ribosomal genes expression following repeated experience of aggression in male mice as revealed by RNA-Seq,” Mol. Neurobiol., 55, No. 1, 390–401 (2018a).

    CAS  PubMed  Google Scholar 

  • Tomasi, D. and Volkow N. D., “Functional connectivity of substantia nigra and ventral tegmental area: maturation during adolescence and effects of ADHD,” Cereb. Cortex, 24, No. 4, 935–944 (2014).

    PubMed  Google Scholar 

  • Trapnell, C., Pachter, L., and Salzberg S. L., “TopHat: discovering splice junctions with RNA-Seq,” Bioinformatics, 25, No. 9, 1105–1111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh, J. J. and Han M. H., “The heterogeneity of ventral tegmental area neurons: Projection functions in a mood-related context,” Neuroscience, 282, 101–108 (2014).

    CAS  PubMed  Google Scholar 

  • Wilson, A. A., Ginovart, N., Schmidt, M., et al., “Novel radiotracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, and in vitro and ex vivo evaluation of 11C-labeled 2-(phenylthio)araalkylamines,” J. Med. Chem., 43, 3103–3110 (2000).

    CAS  PubMed  Google Scholar 

  • Winter, C., von Rumohr, A., Mundt, A., et al., “Lesions of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area enhance depressive-like behavior in rats,” Behav. Brain Res., 184, No. 2, 133–141 (2007).

    CAS  PubMed  Google Scholar 

  • Yager, L. M., Garcia, A. F., Wunsch, A. M., and Ferguson, S. M., “The ins and outs of the striatum: Role in drug addiction,” Neuroscience, 301, 529–541 (2015).

    CAS  PubMed  Google Scholar 

  • Yamaguchi, T., Sheen, W., and Morales, M., “Glutamatergic neurons are present in the rat ventral tegmental area,” Eur. J. Neurosci., 25, 106–118 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Zahniser, N. R. and Doolen, S., “Chronic and acute regulation of Na+/Cl-dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems,” Pharmacol. Ther., 92, 21–55 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kudryavtseva.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 69, No. 1, pp. 98–112, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babenko, V.N., Smagin, D.A., Kovalenko, I.L. et al. Differentially Expressed Genes of the Slc6a Family as Markers of Altered Brain Neurotransmitter System Function in Pathological States in Mice. Neurosci Behav Physi 50, 199–209 (2020). https://doi.org/10.1007/s11055-019-00888-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-019-00888-9

Keywords

Navigation