[go: up one dir, main page]

Skip to main content

Advertisement

Log in

The impact of gold nanoparticles conjugated with albumin on prostate and breast cancer cell lines: insights into cytotoxicity, cellular uptake, migration, and adhesion potential

  • Research
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Breast and prostate cancers are prevalent in women and men, respectively. The process of metastasis plays a crucial role in cancer advancement. Herein, two distinct forms of gold nanoparticles (GNP) were prepared and modified with bovine serum albumin (BSA) to create gold nanorods-BSA (GNR-BSA) and gold nanospheres-BSA (GNS-BSA). Various aspects of biological interactions of these nanoparticles with two prostate cancer cell lines (DU-145 and PC-3) and a breast cancer cell line (MDA-MB-231) have been investigated. The cell viability of DU-145 and PC-3 ranged from 17 to 95% across concentrations of 0.55 to 34.5 µg/mL and for MDA-MB-231 ranged from 17 to 85%. GNS-BSA exhibited no significant cytotoxicity against the cancer cell lines. Regarding cellular uptake, GNR-BSA demonstrated uptake rates of 10%, 14%, and 5% for DU-145, PC-3, and MDA-MB-231 cell lines, respectively, while GNS-BSA showed uptake of less than 0.4% for all the cell lines investigated. Notably, GNR-BSA significantly impeded the cellular migration of DU-145 and PC-3 cells over 48 h (hr) and MDA-MB-231 cells over 24 h compared to controls. GNS-BSA inhibited cell migration over 48 h (hr) for DU-145 and over 24 h for PC-3 and MDA-MB-231. Adhesion assay showed a moderate reduction of PC-3 adhesion ability (\(\sim\) 20%) by GNS-BSA, while a minimum effect was observed on DU-145 (\(\sim\) 5%). GNR-BSA has minimally affected the adhesion ability of both PC-3 (\(\sim\) 8%) and DU-145 (\(\sim\) 13%), and no adhesion ability reduction was observed on MDA-MB-231 by both GNR-BSA or GNS-BSA. This study suggests that GNP-BSA could be promising potential agents for combating cancer and inhibiting cellular invasion, and they could serve as promising platforms for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Дыкмaн ЛA, Khlebtsov NG (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41(6):2256–82

    Article  Google Scholar 

  2. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–86

    Article  CAS  PubMed  Google Scholar 

  3. Oćwieja M, Lupa D, Adamczyk Z (2018) Gold nanoparticle layers on polystyrene microspheres of controlled structure and electrokinetic properties. Langmuir 34(29):8489–98

    Article  PubMed  Google Scholar 

  4. Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–80

    Article  CAS  PubMed  Google Scholar 

  5. Sreenivasulu A, Babasaheb JS, Rafiq S, Shahina SKJ, Gaurav A, Shanker PHPJ (2022) Review on the production and applications of gold nanoparticles as a drug delivery carrier. Int J Health Sci. 6(S5), 4146–4154

  6. Murphy CJ, Gole A, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SD (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41(12):1721–30

    Article  CAS  PubMed  Google Scholar 

  7. Sperling RA, Rivera-Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–908

    Article  CAS  PubMed  Google Scholar 

  8. Tsalsabila A, Herbani Y, Sari YW (2022). Study of lysine and asparagine as capping agent for gold nanoparticles. Journal of Physics Conference Series

  9. Zhang J, Mou L, Jiang X (2020) Surface chemistry of gold nanoparticles for health-related applications. Chem Sci 11(4):923–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahmoud NN, Hikmat S, Abu Ghith D, Hajeer M, Hamadneh L, Qattan D, Khalil EA (2019) Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: effect of nanoparticles’ shape and surface modification. Int J Pharm 565:174–186

    Article  CAS  PubMed  Google Scholar 

  11. Mahmoud NN, Alkilany AM, Dietrich D, Karst U, Al-Bakri AG, Khalil EA (2017) Preferential accumulation of gold nanorods into human skin hair follicles: Effect of nanoparticle surface chemistry. J Colloid Interface Sci 503:95–102

    Article  CAS  PubMed  Google Scholar 

  12. Chittineedi P, Mohammed A, Nawi NM, Pandrangi SL (2023) Polyherbal formulation conjugated to gold nanoparticles induced ferroptosis in drug-resistant breast cancer stem cells through ferritin degradation. Front Pharmacol 14:113475

    Article  Google Scholar 

  13. Aldawsari HM, Singh S, Alhakamy NA, Bakhaidar RB, Halwani AA, Badr-Eldin SM (2021) Gum acacia functionalized colloidal gold nanoparticles of letrozole as biocompatible drug delivery carrier for treatment of breast cancer. Pharmaceutics 13(10):1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Solaimuthu B, Mukherjee S, Das S, Bhat FA, Paulraj RS, Patra CR, Arunakaran J (2017) Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochemistry and Function 35(4):217–31

    Article  Google Scholar 

  15. Vemuri SK, Halder S, Banala RR, Rachamalla HK, Devraj VM, Mallarpu CS, Neerudu UK, Bodlapati R, Mukherjee S, Venkata SGP, Venkata GRA, Thakkumalai M, Jana K (2022) Modulatory effects of biosynthesized gold nanoparticles conjugated with curcumin and paclitaxel on tumorigenesis and metastatic pathways—in vitro and in vivo studies. Int J Mol Sci 23(4):2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles J Phys Chem C

  17. Harmsen S, Wall MA, Huang R, Kircher MF (2017) Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat Protoc 12(7):1400–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolaños K, Kogan MJ, Araya E (2019) Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomedicine 14:6387–6406

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Liu S, Liao Y, Yang H, Chen Z, Hu Y, Fu S, Wu J (2023) Albumin-modified gold nanoparticles as novel radiosensitizers for enhancing lung cancer radiotherapy. Int J Nanomedicine 18:1949–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kefayat A, Ghahremani F, Motaghi H, Mehrgardi MA (2019) Investigation of different targeting decorations effect on the radiosensitizing efficacy of albumin-stabilized gold nanoparticles for breast cancer radiation therapy. Eur J Pharm Sci 130:225–233

    Article  CAS  PubMed  Google Scholar 

  21. Al-Jawad SMH, Taha AA, Al-Halbosiy MMF, Al-Barram LFA (2018) Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy. Photodiagnosis Photodyn Ther 21:201–210

    Article  CAS  PubMed  Google Scholar 

  22. Seo B, Lim K, Kim SS, Oh KT, Lee ES, Choi HG, Shin BS, Youn YS (2019) Small gold nanorods-loaded hybrid albumin nanoparticles with high photothermal efficacy for tumor ablation. Colloids Surf B Biointerfaces 179:340–351

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Li J, Kawazoe N, Chen G (2018) Photothermal ablation of cancer cells by albumin-modified gold nanorods and activation of dendritic cells. Materials (Basel) 12(1):31

    Article  PubMed  Google Scholar 

  24. Peralta DV, Heidari Z, Dash S, Tarr MA (2015) Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cells. ACS Appl Mater Interfaces 7(13):7101–7111

    Article  CAS  PubMed  Google Scholar 

  25. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147

    Article  CAS  PubMed  Google Scholar 

  26. Velasco-Aguirre C, Morales F, Gallardo-Toledo E, Guerrero S, Giralt E, Araya E, Kogan MJ (2015) Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int J Nanomedicine 10:4919–4936

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44(17):6287–6305

    Article  CAS  PubMed  Google Scholar 

  28. Mocan L, Matea C, Tabaran FA, Mosteanu O, Pop T, Mocan T, Iancu C (2015) Photothermal treatment of liver cancer with albumin-conjugated gold nanoparticles initiates Golgi apparatus-ER dysfunction and caspase-3 apoptotic pathway activation by selective targeting of Gp60 receptor. Int J Nanomedicine 10:5435–5445

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gawde KA, Sau S, Tatiparti K, Kashaw SK, Mehrmohammadi M, Azmi AS, Iyer AK (2018) Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids Surf B Biointerfaces 167:8–19

    Article  CAS  PubMed  Google Scholar 

  30. Larsen MT, Kuhlmann M, Hvam ML, Howard KA (2016) Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kudarha RR, Sawant KK (2017) Albumin based versatile multifunctional nanocarriers for cancer therapy: fabrication, surface modification, multimodal therapeutics and imaging approaches. Mater Sci Eng C Mater Biol Appl 81:607–626

    Article  CAS  PubMed  Google Scholar 

  32. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  33. Pezzella F, Tavassoli M, Kerr DJ (eds) (2019) Oxford textbook of cancer biology. Oxford University Press

  34. Kleiner DE, Stetler-Stevenson WG (1999) Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43(Suppl):S42-51

    Article  CAS  PubMed  Google Scholar 

  35. Tan GJ, Peng ZK, Lu JP, Tang FQ (2013) Cathepsins mediate tumor metastasis. World J Biol Chem 4(4):91–101

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tang L, Han X (2013) The urokinase plasminogen activator system in breast cancer invasion and metastasis. Biomed Pharmacother 67(2):179–182

    Article  CAS  PubMed  Google Scholar 

  37. Hamadneh L, Bahader M, Abuarqoub R, AlWahsh M, Alhusban A, Hikmat S (2021) PI3K/AKT and MAPK1 molecular changes preceding matrix metallopeptidases overexpression during tamoxifen-resistance development are correlated to poor prognosis in breast cancer patients. Breast Cancer 28(6):1358–1366

    Article  PubMed  Google Scholar 

  38. Zhou T, Yu M, Zhang B, Wang L, Wu X, Zhou H, Du Y, Hao J, Tu Y, Chen C, Wei T (2014) Inhibition of cancer cell migration by gold nanorods: molecular mechanisms and implications for cancer therapy. Adv Funct Mater 24(44):6922–32

    Article  CAS  Google Scholar 

  39. Wu Y, Ali MRK, Dong B, Han T, Chen K, Chen J, Tang Y, Fang N, Wang F, El-Sayed MA (2018) Gold nanorod photothermal therapy alters cell junctions and actin network in inhibiting cancer cell collective migration. Acs Nano 12(9):9279–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arizmendi-Grijalva A, Martínez-Higuera A, Soto-Guzmán JA, Martínez-Soto JM, Rodríguez-León E, Rodríguez-Beas C, López-Soto LF, Alvarez-Cirerol FJ, García-Flores N, Cortés-Reynosa P, Pérez-Salazar E, Íñiguez-Palomares R (2021) Effect on human vascular endothelial cells of Au nanoparticles synthesized from Vitex mollis. Acs Omega 6(38):24338–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kashani AS, Bădilescu S, PieknyA, Packirisamy M (2019) Nano-bio-interaction of gold nanoparticles with cancer cells and impacts on biophysical properties

  42. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, Atala A, Mukhopadhyay D, Söker S (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11(9):3530–4

    Article  CAS  PubMed  Google Scholar 

  43. Liu Y-L, Chou C-K, Kim M, Vasisht R, Kuo Y-A, Ang P, Liu C, Perillo EP, Chen Y-A, Blocher K, Horng H, Chen Y-I, Nguyen DT, Yankeelov TE, Hung M-C, Dunn AK, Yeh H-C (2019) Assessing metastatic potential of breast cancer cells based on EGFR dynamics. Sci Rep 9(1):3395

    Article  PubMed  PubMed Central  Google Scholar 

  44. Russell PJ, Kingsley EA (2003) Human prostate cancer cell lines. Methods Mol Med 81:21–39

    CAS  PubMed  Google Scholar 

  45. Sobel RE, Sadar MD (2005) Cell lines used in prostate cancer research: a compendium of old and new lines–part 1. J Urol 173(2):342–359

    Article  CAS  PubMed  Google Scholar 

  46. Ye X, Gao Y, Chen J, Reifsnyder DC, Zheng C, Murray CB (2013) Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett 13(5):2163–2171

    Article  CAS  PubMed  Google Scholar 

  47. Dong J, Carpinone PL, Pyrgiotakis G, Demokritou P, Moudgil BM (2020) Synthesis of precision gold nanoparticles using Turkevich method. Kona 37:224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Riss T, Niles A, Moravec R, Karassina N, Vidugiriene J (2004) Cytotoxicity assays: in vitro methods to measure dead cells. In: Markossian S, Grossman A, Brimacombe K, Arkin M, Auld D, Austin C, Baell J, Chung TDY, Coussens NP, Dahlin JL, Devanarayan V, Foley TL, Glicksman M, Gorshkov K, Haas JV, Hall MD, Hoare S, Inglese J, Iversen PW, Kales SC, Lal-Nag M, Li Z, Mcgee J, Mcmanus O, Riss T, Saradjian P, Sittampalam GS, Tarselli M, Trask OJ Jr, Wang Y, Weidner JR, Wildey MJ, Wilson K, Xia M, Xu X (Eds) Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda (MD)

  49. Bessar H, Venditti I, Benassi L, Vaschieri C, Azzoni P, Pellacani G, Magnoni C, Botti E, Casagrande V, Federici M, Costanzo A, Fontana L, Testa G, Mostafa FF, Ibrahim SA, Russo MV, Fratoddi I (2016) Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids Surf B Biointerfaces 141:141–147

    Article  CAS  PubMed  Google Scholar 

  50. Strozyk MS, Chanana M, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM (2012) Protein/polymer-based dual-responsive gold nanoparticles with pH-dependent thermal sensitivity. Adv Func Mater 22(7):1436–1444

    Article  CAS  Google Scholar 

  51. Chakraborty S, Joshi P, Shanker V, Ansari ZA, Singh SP, Chakrabarti P (2011) Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 27(12):7722–7731

    Article  CAS  PubMed  Google Scholar 

  52. Simu S, Marcovici I, Dobrescu A, Malita D, Dehelean CA, Coricovac D, Olaru F, Draghici GA, Navolan D (2021) Insights into the behavior of triple-negative MDA-MB-231 breast carcinoma cells following the treatment with 17β-ethinylestradiol and levonorgestrel. Molecules 26(9):2776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Russell PJ, Kingsley EA (2003) Human prostate cancer cell lines. In Prostate cancer methods and protocols, Russell PJ, Jackson P, Kingsley EA Springer New York: Totowa, NJ 21–39

  54. Pyshnaya IA, Razum KV, Poletaeva JE, Pyshnyi DV, Zenkova MA, Ryabchikova EI (2014) Comparison of behaviour in different liquids and in cells of gold nanorods and spherical nanoparticles modified by linear polyethyleneimine and bovine serum albumin. Biomed Res Int 2014:908175

    Article  PubMed  PubMed Central  Google Scholar 

  55. Akhavan A, Kalhor HR, Kassaee MZ, Sheikh N, Hassanlou M (2010) Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chem Eng J 159(1):230–235

    Article  CAS  Google Scholar 

  56. Cardoso Avila PE, Rangel Mendoza A, Pichardo Molina JL, Flores Villavicencio LL, Castruita Dominguez JP, Chilakapati MK, Sabanero Lopez M (2017) Biological response of HeLa cells to gold nanoparticles coated with organic molecules. Toxicol In Vitro 42:114–122

    Article  CAS  PubMed  Google Scholar 

  57. Mocan L, Matea C, Tabaran FA, Mosteanu O, Pop T, Puia C, Agoston-Coldea L, Zaharie G, Mocan T, Buzoianu AD, Iancu C (2017) Selective ex vivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles. Biomaterials 119:33–42

    Article  CAS  PubMed  Google Scholar 

  58. Al-Jawad SMH, Taha AA, Al-Halbosiy MMF, Al-Barram LFA (2018) Synthesis and characterization of small-sized gold nanoparticles coated by bovine serum albumin (BSA) for cancer photothermal therapy. Photodiagn Photodyn Ther 21:201–210

    Article  CAS  Google Scholar 

  59. Liu S, Piao J, Liu Y, Tang J, Liu P, Yang D, Zhang L, Ge N, Jin Z, Jiang Q, Cui L (2018) Radiosensitizing effects of different size bovine serum albumin-templated gold nanoparticles on H22 hepatoma-bearing mice. Nanomedicine (Lond) 13(11):1371–1383

    Article  CAS  PubMed  Google Scholar 

  60. Murawala P, Tirmale A, Shiras A, Prasad BL (2014) In situ synthesized BSA capped gold nanoparticles: effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells. Mater Sci Eng C Mater Biol Appl 34:158–167

    Article  CAS  PubMed  Google Scholar 

  61. Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Singh Kamboj S, Singh Bakshi M (2012) Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J Phys Chem C 116(15):8834–8843

    Article  CAS  Google Scholar 

  62. Dong L, Li M, Zhang S, Li J, Shen G, Tu Y, Zhu J, Tao J (2015) Cytotoxicity of BSA-stabilized gold nanoclusters: in vitro and in vivo study. Small 11(21):2571–2581

    Article  CAS  PubMed  Google Scholar 

  63. Ding L, Yao C, Yin X, Li C, Huang Y, Wu M, Wang B, Guo X, Wang Y, Wu M (2018) Size, shape, and protein corona determine cellular uptake and removal mechanisms of gold nanoparticles. Small 14(42):e1801451

    Article  PubMed  Google Scholar 

  64. Hameed M, Panicker S, Abdallah SH, Khan AA, Han C, Chehimi MM, Mohamed AA (2020) Protein-coated aryl modified gold nanoparticles for cellular uptake study by osteosarcoma cancer cells. Langmuir 36(40):11765–11775

    Article  CAS  PubMed  Google Scholar 

  65. Xie X, Liao J, Shao X, Li Q, Lin Y (2017) The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci Rep 7(1):3827

    Article  PubMed  PubMed Central  Google Scholar 

  66. Malugin A, Ghandehari H (2010) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30(3):212–217

    Article  PubMed  Google Scholar 

  67. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  PubMed  Google Scholar 

  68. Huang N, Liu Y, Fang Y, Zheng S, Wu J, Wang M, Zhong W, Shi M, Xing M, Liao W (2020) Gold nanoparticles induce tumor vessel normalization and impair metastasis by inhibiting endothelial Smad2/3 signaling. ACS Nano 14(7):7940–7958

    Article  CAS  PubMed  Google Scholar 

  69. Ngernyuang N, Wongwattanakul M, Charusirisawad W, Shao R, Limpaiboon T (2022) Green synthesized apigenin conjugated gold nanoparticles inhibit cholangiocarcinoma cell activity and endothelial cell angiogenesis in vitro. Heliyon 8(12):e12028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Balakrishnan S, Bhat FA, Raja Singh P, Mukherjee S, Elumalai P, Das S, Patra CR, Arunakaran J (2016) Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49(6):678–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park SY, Chae SY, Park JO, Lee KJ, Park G (2016) Gold-conjugated resveratrol nanoparticles attenuate the invasion and MMP-9 and COX-2 expression in breast cancer cells. Oncol Rep 35(6):3248–3256

    Article  CAS  PubMed  Google Scholar 

  72. Niu J, Chu Y, Huang YF, Chong YS, Jiang ZH, Mao ZW, Peng LH, Gao JQ (2017) Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Appl Mater Interfaces 9(11):9388–9401

    Article  CAS  PubMed  Google Scholar 

  73. Xiong Z, Alves CS, Wang J, Li A, Liu J, Shen M, Rodrigues J, Tomás H, Shi X (2019) Zwitterion-functionalized dendrimer-entrapped gold nanoparticles for serum-enhanced gene delivery to inhibit cancer cell metastasis. Acta Biomater 99:320–329

    Article  CAS  PubMed  Google Scholar 

  74. Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115(Pt 20):3861–3863

    Article  CAS  PubMed  Google Scholar 

  75. Lundström A, Holmbom J, Lindqvist C, Nordström T (1998) The role of alpha2 beta1 and alpha3 beta1 integrin receptors in the initial anchoring of MDA-MB-231 human breast cancer cells to cortical bone matrix. Biochem Biophys Res Commun 250(3):735–740

    Article  PubMed  Google Scholar 

  76. Maity G, Choudhury PR, Sen T, Ganguly KK, Sil H, Chatterjee A (2011) Culture of human breast cancer cell line (MDA-MB-231) on fibronectin-coated surface induces pro-matrix metalloproteinase-9 expression and activity. Tumour Biol 32(1):129–138

    Article  CAS  PubMed  Google Scholar 

  77. Juan-Rivera MC, Martínez-Ferrer M (2018) Integrin inhibitors in prostate cancer. Cancers (Basel) 10(2):44

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Deanship of Scientific Research at the University of Jordan and Al-Zaytoonah University of Jordan (2020–2019/12/28).

Author information

Authors and Affiliations

Authors

Contributions

Rana Abu-Dahab and Nouf N. Mahmoud contributed to the study conception and design. Talah M. Salman, Sabaa Al-Dabash, and Maha Abdullah performed material preparation, data collection, and analysis. The first draft of the manuscript was written by Nouf N. Mahmoud, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nouf N. Mahmoud or Rana Abu-Dahab.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, N.N., Salman, T.M., Al-Dabash, S. et al. The impact of gold nanoparticles conjugated with albumin on prostate and breast cancer cell lines: insights into cytotoxicity, cellular uptake, migration, and adhesion potential. J Nanopart Res 26, 101 (2024). https://doi.org/10.1007/s11051-024-05990-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-024-05990-9

Keywords

Navigation