[go: up one dir, main page]

Skip to main content
Log in

Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7–8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277. doi:10.1016/j.matlet.2013.11.038

    Article  Google Scholar 

  • Barwal I, Ranjan P, Kateriya S, Yadav SC (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9:56. doi:10.1186/1477-3155-9-56

    Article  Google Scholar 

  • Brayner R et al (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708. doi:10.1166/jnn.2007.600

    Article  Google Scholar 

  • Brayner R et al (2009) Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods. Langmuir 25:10062–10067. doi:10.1021/la9010345

    Article  Google Scholar 

  • Brayner R et al (2012) Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloid Surf B 93:20–23. doi:10.1016/j.colsurfb.2011.10.014

    Article  Google Scholar 

  • Castro L, Blazquez ML, Munoz JA, Gonzalez F, Ballester A (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7:109–116. doi:10.1049/iet-nbt.2012.0041

    Article  Google Scholar 

  • Castro L, Blázquez ML, Muñoz JA, González F, Ballester A (2014) Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3:199–216. doi:10.1166/rase.2014.1064

    Article  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon. J Appl Phycol 21:145–152. doi:10.1007/s10811-008-9343-3

    Article  Google Scholar 

  • Dahoumane SA, Djédiat C, Yeprémian C, Couté A, Fiévet F, Brayner R (2010) Design of magnetic akaganeite-cyanobacteria hybrid biofilms. Thin Solid Films 518:5432–5436. doi:10.1016/j.tsf.2010.04.001

    Article  Google Scholar 

  • Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012a) Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanopart Res 14:883. doi:10.1007/s11051-012-0883-8

    Article  Google Scholar 

  • Dahoumane SA, Djédiat C, Yeprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012b) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109:284–288. doi:10.1002/bit.23276

    Article  Google Scholar 

  • Dahoumane SA, Wijesekera K, Filipe CD, Brennan JD (2014a) Stoichiometrically controlled production of bimetallic gold-silver alloy colloids using micro-alga cultures. J Colloid Interface Sci 416:67–72. doi:10.1016/j.jcis.2013.10.048

    Article  Google Scholar 

  • Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2014b) A Global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res 16:2607. doi:10.1007/s11051-014-2607-8

    Article  Google Scholar 

  • Feurtet-Mazel A, Mornet S, Charron L, Mesmer-Dudons N, Maury-Brachet R, Baudrimont M (2015) Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environ Sci Pollut Res. doi:10.1007/s11356-015-4139-x

    Google Scholar 

  • Focsan M, Ardelean II, Craciun C, Astilean S (2011) Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803. Nanotechnology. doi:10.1088/0957-4484/22/48/485101

    Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122. doi:10.1007/s10853-008-2745-4

    Article  Google Scholar 

  • Govindaraju K, Kiruthiga V, Kumar VG, Singaravelu G (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum Wightii Grevilli and their antibacterial effects. J Nanosci Nanotechnol 9:5497–5501. doi:10.1166/jnn.2009.1199

    Article  Google Scholar 

  • Halvorson Lahr R, Vikesland PJ (2014) Surface-enhanced Raman spectroscopy (SERS) cellular imaging of intracellulary biosynthesized gold nanoparticles. ACS Sustain Chem Eng 2:1599–1608. doi:10.1021/sc500105n

    Article  Google Scholar 

  • Jeffryes C, Agathos SN, Rorrer G (2015) Biogenic nanomaterials from photosynthetic microorganisms. Curr Opin Biotechnol 33:23–31. doi:10.1016/j.copbio.2014.10.005

    Article  Google Scholar 

  • Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK (2014) Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol 24:522–533. doi:10.4014/jmb.1306.06014

    Article  Google Scholar 

  • Kaduková J, Velgosová O, Mražíková A, Marcinčáková R (2014) The effect of culture age and initial silver concentration on biosynthesis of Ag nanoparticles. Nova Biotechnol Chim 13:28–37. doi:10.2478/nbec-2014-0004

    Google Scholar 

  • Kannan RRR, Arumugam R, Ramya D, Manivannan K, Anantharaman P (2013a) Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci 3:229–233. doi:10.1007/s13204-012-0125-5

    Article  Google Scholar 

  • Kannan RRR, Stirk WA, Van Staden J (2013b) Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S Afr J Bot 86:1–4. doi:10.1016/j.sajb.2013.01.003

    Article  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trend Biotechnol 19:15–20. doi:10.1016/S0167-7799(00)01514-6

    Article  Google Scholar 

  • Kumar P, Senthamil Selvi S, Govindaraju M (2012a) Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl Nanosci 3:495–500. doi:10.1007/s13204-012-0151-3

    Article  Google Scholar 

  • Kumar P, Senthamil Selvi S, Lakshmi Prabha A, Prem Kumar K, Ganeshkumar S, Govindaraju M (2012b) Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its anti-bacterial activity. Nano Biomed Eng 4:12–16. doi:10.5101/nbe.v4i1.p12-16

    Article  Google Scholar 

  • Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K (2013) Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloid Surf B 103:658–661. doi:10.1016/j.colsurfb.2012.11.022

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787. doi:10.1021/la052652c

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006b) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex. Langmuir 22:7318–7323. doi:10.1021/la060873s

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007a) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 23:2694–2699. doi:10.1021/la0613124

    Article  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007b) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. Langmuir 23:8982–8987. doi:10.1021/la7012446

    Article  Google Scholar 

  • Li Y et al (2015) Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract. IET Nanobiotechnol 9:19–26. doi:10.1049/iet-nbt.2013.0062

    Article  Google Scholar 

  • Liu B, Xie J, Lee JY, Ting YP, Chen JP (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 109:15256–15263. doi:10.1021/jp051449n

    Article  Google Scholar 

  • Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG (2011) Gold nanoparticles produced in a microalga. J Nanopart Res 13:6439–6445. doi:10.1007/s11051-011-0397-9

    Article  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964. doi:10.3390/molecules18055954

    Article  Google Scholar 

  • Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Ira F 19:926–929. doi:10.1016/j.scient.2012.01.010

    Article  Google Scholar 

  • Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618. doi:10.1016/j.jhazmat.2008.11.064

    Article  Google Scholar 

  • Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D (2011) Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts 1:149–152. doi:10.5681/bi.2011.020

    Google Scholar 

  • Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176:1937–1949. doi:10.1007/s12010-015-1690-3

    Article  Google Scholar 

  • MubarakAli D, Gopinath V, Rameshbabu N, Thajuddin N (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11. doi:10.1016/j.matlet.2012.01.026

    Article  Google Scholar 

  • Nagarajan S, Arumugam Kuppusamy K (2013) Extracellular synthesis of zinc oxide nanoparticles using seaweeds of Gulf of Mannar, India. J Nanobiotechnol 11:39. doi:10.1186/1477-3155-11-39

    Article  Google Scholar 

  • Ninfa AJ, Ballou DP, Benore M (2010) Fundamental laboratory approches for biochemistry and biotechnology, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Pandimurugan R, Thambidurai S (2014) Seaweed-ZnO composite for better antibacterial properties. J Appl Polym Sci 131:40948. doi:10.1002/app.40948

    Article  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:5. doi:10.4172/2157-7439.1000233

    Article  Google Scholar 

  • Parial D, Patra HK, Dasgupta AKR, Pal R (2012a) Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 47:22–29. doi:10.1080/09670262.2011.653406

    Article  Google Scholar 

  • Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012b) Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl Phycol 24:55–60. doi:10.1007/s10811-010-9645-0

    Article  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119. doi:10.1016/j.btre.2014.12.001

    Article  Google Scholar 

  • Rahman A, Ismail A, Jumbianti D, Magdalena S, Sudrajat H (2009) Synthesis of copper oxide nano particles by using Phormidium Cyanobacterium. Indo J Chem 9:355–360

    Google Scholar 

  • Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3:44. doi:10.1186/2193-8865-3-44

    Article  Google Scholar 

  • Rösken LM, Körsten S, Fischer CB, Schönleber A, van Smaalen S, Geimer S, Wehner S (2014) Time-dependent growth of crystalline Au-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp. J Nanopart Res 16:2370. doi:10.1007/s11051-014-2370-x

    Article  Google Scholar 

  • Satapathy S, Shukla SP, Sandeep KP, Singh AR, Sharma N (2014) Evaluation of the performance of an algal bioreactor for silver nanoparticle production. J Appl Phycol 27:285–291. doi:10.1007/s10811-014-0311-9

    Article  Google Scholar 

  • Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I (2011) Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13:3207–3216. doi:10.1007/s11051-011-0221-6

    Article  Google Scholar 

  • Senapati S, Syed A, Moeez S, Kumar A, Ahmad A (2012) Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 79:116–118. doi:10.1016/j.matlet.2012.04.009

    Article  Google Scholar 

  • Sharma B, Purkayastha DD, Hazra S, Gogoi L, Bhattacharjee CR, Ghosh NN, Rout J (2014) Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett 116:94–97. doi:10.1016/j.matlet.2013.10.107

    Article  Google Scholar 

  • Stein JR (1973) Handbook of phycological methods. Culture methods and growth measurements. Cambridge University Press, Cambridge

    Google Scholar 

  • Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27:1861–1869. doi:10.1007/s10811-014-0492-2

    Article  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007a) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:672–682. doi:10.1002/smll.200600612

    Article  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007b) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439. doi:10.1021/nn7000883

    Article  Google Scholar 

  • Yin X, Chen S, Wu A (2010) Green chemistry synthesis of gold nanoparticles using lactic acid as a reducing agent. Micro Nano Lett 5:270–273. doi:10.1049/mnl.2010.0117

    Article  Google Scholar 

Download references

Acknowledgments

SAD thanks the French Ministry of Higher Education and Scientific Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Amar Dahoumane.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahoumane, S.A., Yéprémian, C., Djédiat, C. et al. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanopart Res 18, 79 (2016). https://doi.org/10.1007/s11051-016-3378-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3378-1

Keywords

Navigation