[go: up one dir, main page]

Skip to main content
Log in

Failure identification for 3D linear systems

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Geometric control theory is used to investigate the problem of fault detection and isolation for 3D linear systems described by Fornasini–Marchesini models with the aim using these results in applications areas such as wireless sensor networks. Necessary and sufficient conditions for the existence of a solution to this problem are established together with constructive methods for the design of observers for fault detection and identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Basile, G., & Marro, G. (1992). Controlled and conditioned invariants in linear system theory. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Bisiacco, M., & Valcher, M. E. (2006). Observer-based fault detection and isolation for 2D state-space models. Multidimensional Systems and Signal Processing, 17, 219–242.

    Article  MATH  MathSciNet  Google Scholar 

  • Buddika Sumanasena, M. G., & Bauer, P. H. (2011). Realization using the Fornasini-Marchesini model for implementations in distributed grid sensor networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(11), 2708–2717.

    Article  MathSciNet  Google Scholar 

  • Fornasini, E., & Marchesini, G. (1978). Doubly-indexed dynamical systems: State-space models and structural properties. Mathematical Systems Theory, 12(1), 59–72.

    Article  MATH  MathSciNet  Google Scholar 

  • Fornasini, E., & Marchesini, G. (1988). Failure detection in 2D systems. Control-Theory and Advanced Technology, 4(4), 381–393.

    MathSciNet  Google Scholar 

  • Graham, R. L., & Lehmer, D. H. (1975). On the permanent of Schur’s matrix. Journal of the Australian Mathematical Society (Series A), 21, 487–497.

    Article  MathSciNet  Google Scholar 

  • Gałkowski, K., Lam, J., Xu, S., & Lin, Z. (2003). LMI approach to state-feedback stabilization of multidimensional systems. International Journal of Control, 76(14), 1428–1436.

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang, I., Kim, S., Kim, Y., & Seah, C. E. (2010). A survey of fault detection, isolation, and reconfiguration methods. IEEE Transactions on Control Systems Technology, 18(3), 636–653.

    Article  Google Scholar 

  • Ihab, S., Postlethwaite, I., & Dai-Wei, Gu. (2011). Survey and application of sensor fault detection and isolation schemes. Control Engineering Practice, 19(7), 658–674.

    Article  Google Scholar 

  • Jury, E. I. (1978). Stability of multidimensional scalar and matrix polynomials. Proceedings of the IEEE, 66(9), 1018–1047.

    Article  MathSciNet  Google Scholar 

  • Kar, H., & Singh, V. (2003). Stability of 2-D systems described by the Fornasini–Marchesini first model. IEEE Transactions on Signal Processing, 51(6), 1675–1676.

    Article  MathSciNet  Google Scholar 

  • Massoumnia, M. A. (1986). A geometric approach to the synthesis of failure detection filters. IEEE Transactions on Automatic Control, 31, 839–849.

    Article  MATH  MathSciNet  Google Scholar 

  • Napp-Avelli, D., Rapisarda, P., & Rocha, P. (2011). Time-relevant stability of 2D systems. Automatica, 47(11), 2373–2382.

    Article  MathSciNet  Google Scholar 

  • Ntogramatzidis, L., Cantoni, M., & Ran, Y. (2008). A geometric theory for 2-D systems including notions of stabilizability. Multidimensional Systems and Signal Processing, 19, 449–475.

    Article  MATH  MathSciNet  Google Scholar 

  • Ntogramatzidis, L. (2012). Structural invariants of two-dimensional systems. SIAM Journal on Control and Optimization, 50(1), 334–356.

    Article  MATH  MathSciNet  Google Scholar 

  • Ntogramatzidis, L., & Cantoni, M. (2012). Detectability subspaces and observer synthesis for two-dimensional systems. Multidimensional Systems and Signal Processing, 23, 79–96.

    Article  MATH  MathSciNet  Google Scholar 

  • Rapisarda, P., & Rocha, P. (2012). Lyapunov functions for time-relevant 2D systems, with application to first-orthant stable systems. Automatica, 48(9), 1998–2006.

    Article  MATH  MathSciNet  Google Scholar 

  • Wonham, W. M. (1979). Linear multivariable control: A geometric approach. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Zampieri, S. (1992). 2D residual generation and dead beat observers. Systems & Control Letters, 17, 483492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maleki, S., Rapisarda, P., Ntogramatzidis, L. et al. Failure identification for 3D linear systems. Multidim Syst Sign Process 26, 481–502 (2015). https://doi.org/10.1007/s11045-013-0271-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0271-2

Keywords

Navigation