[go: up one dir, main page]

Skip to main content

Advertisement

Log in

How GANs assist in Covid-19 pandemic era: a review

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Generative Adversarial Networks (GANs) are used in several applications of underrepresented domains. The GAN’s ability to generate data without explicitly modeling the probability distribution enables the synthesis of unlabeled samples and effectively imposes a higher-order consistency. Medical data is costly to aggregate and, in many cases, can risk the patient’s privacy. The high fidelity of generated data by GANs has led many researchers in healthcare to use GANs to accommodate the scarce datasets in the domain. Coronavirus disease 2019 (Covid-19) constitutes one of those cases. As a virus that appeared two years ago, limited information and data exist compared to other phenomena present for decades. Thus, Covid-19 datasets are imbalanced and tend to be biased towards negative Covid-19 cases, as usually, only less than 10% of the data belong to a Covid-19 positive class. This study conducts a detailed review of all eleven existing GAN applications that aid Covid-19 detection. The existing work focuses on the synthesis, segmentation, classification, and saliency map generation of radiological data namely Chest X-rays (CXR) and Computed Tomography (CT). Both imaging data have been reliable information sources for detecting Covid-19. Furthermore, the application of GAN in Covid-19 spread modeling with data assimilation and uncertainty quantification is also explored. We believe that the illustrated findings will provide a clear overview and inspire future innovations in the right direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

Highest submissions Accuracy

ACGAN:

Auxiliary Classifier GAN

AUC:

Area under the curve

BDLSTM:

Bidirectional Long Short-term Memory network

CCS-GAN:

Cycle Consistent Segmentation Generative Adversarial Network

cGAN:

Conditional Generative Adversarial Network

CNN:

Convolutional Neural Network

Covid-19:

Coronavirus disease 2019

CT:

Computed Tomography

CXR:

Chest X-rays

DA:

Data Augmentation

DA-PredGAN:

Data Assimilation Predictive GAN

DCGAN:

Deep convolutional generative adversarial network

DI2IN:

Deep image-to-image network

DM:

Dice Metric

DSC:

DICE Similarity Coefficient

FID:

Frechet inception distance

GAN:

Generative Adversarial Network

GeoGAN:

Geometry-Aware Shape Generative Adversarial Network

HD:

Hausdorff Distance

LIR:

Lesion inclusion rate

MAE:

Mean Absolute error

MAS:

Mean anomaly score

NIROM:

Non-intrusive reduced-order model

PCA:

Principal Component Analysis

PHO:

Percentage of High Opacity

PO:

Percentage of Opacity

PredGAN:

Predictive

PSNR:

Peak signal-to-noise ratio

RML:

Randomized maximum likelihood

RMSE:

Root mean square error

ROM:

Reduced-Order Models

RTO:

Randomize-then-optimize

RT-PCR:

Reverse-transcription polymerase chain reaction

SSIM:

Structural similarity index measure

STN:

Spatial transformer network

UQ-PredGAN:

Uncertainty Quantification Predictive GAN

WSS:

Weakly supervised segmentation

References

  1. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Xia L (2020) Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296(2):E32–E40

    PubMed  Google Scholar 

  2. Alqahtani H, Kavakli-Thorne M, Kumar G, SBSSTC F (2019) An analysis of evaluation metrics of GANs. In: International Conference on Information Technology and Applications (ICITA). 7

  3. Antoniou A, Storkey A, Edwards H (2017) Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340

  4. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International conference on machine learning (pp. 214–223). PMLR

  5. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein gan. arXiv preprint arXiv:1701.07875

  6. Auchincloss AH, Diez Roux AV (2008) A new tool for epidemiology: the usefulness of dynamic-agent models in understanding place effects on health. Am J Epidemiol 168(1):1–8

    PubMed  Google Scholar 

  7. Bardsley JM, Solonen A, Haario H, Laine M (2014) Randomize-then-optimize: A method for sampling from posterior distributions in nonlinear inverse problems. SIAM J Sci Comput 36(4):A1895–A1910

    MathSciNet  Google Scholar 

  8. Basu S, Andrews J (2013) Complexity in mathematical models of public health policies: a guide for consumers of models. PLoS Med 10(10):e1001540

    PubMed  PubMed Central  Google Scholar 

  9. Bearman A, Russakovsky O, Ferrari V, Fei-Fei L (2016) What’s the point: Semantic segmentation with point supervision. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII 14 (pp 549–565). Springer International Publishing

  10. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Chung M (2020) Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 295(3):200463

    PubMed  Google Scholar 

  11. Canchumuni SW, Castro JD, Potratz J, Emerick AA, Pacheco MAC (2021) Recent developments combining ensemble smoother and deep generative networks for facies history matching. Comput Geosci 25(1):433–466

    MathSciNet  Google Scholar 

  12. Casas CQ, Arcucci R, Guo Y (2020a) Urban air pollution forecasts generated from latent space representation. In: ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations

  13. Casas CQ, Arcucci R, Wu P, Pain C, Guo YK (2020) A reduced order deep data assimilation model. Physica D 412:132615

    MathSciNet  Google Scholar 

  14. Chaganti S, Balachandran A, Chabin G, Cohen S, Flohr T, Georgescu B, Comaniciu D (2020) Quantification of tomographic patterns associated with COVID-19 from chest CT. ArXiv

  15. Cheng M, Fang F, Pain CC, Navon IM (2020) Data-driven modelling of nonlinear spatio-temporal fluid flows using a deep convolutional generative adversarial network. Comput Methods Appl Mech Eng 365:113000

    ADS  MathSciNet  Google Scholar 

  16. Chong MJ, Forsyth D (2020) Effectively unbiased fid and inception score and where to find them. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition pp 6070–6079

  17. Chowdhury ME, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub ZB, Islam MT (2020) Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8:132665–132676

    Google Scholar 

  18. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, Shan H (2020) CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 295(1):202–207

    PubMed  Google Scholar 

  19. Cunniff C, Byrne JLB, Hudgins LM, Moeschler JB, Olney AH, Pauli RM, Seaver LH, Stevens CA, Figone C (2000) Informed consent for medical photographs. Genet Med 2(6):353–355

    PubMed Central  Google Scholar 

  20. Cohen JP, Luck M, Honari S (2018) Distribution matching losses can hallucinate features in medical image translation. In International conference on medical image computing and computer-assisted intervention (pp 529–536). Springer, Cham

  21. Cohen JP, Morrison P, Dao L (2020) COVID-19 image data collection. arXiv preprint arXiv:2003.11597

  22. COVID-19 CT segmentation dataset. (2021, January 5). Medical Segmentation. https://medicalsegmentation.com/covid19/

  23. Cuevas E (2020) An agent-based model to evaluate the COVID-19 transmission risks in facilities. Comput Biol Med 121:103827

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cui, Zhiyong, Ruimin Ke, Ziyuan Pu, and Yinhai Wang (2018) Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143

  25. D’Amore L, Arcucci R, Carracciuolo L, Murli A (2014) A scalable approach for variational data assimilation. J Sci Comput 61(2):239–257

    MathSciNet  Google Scholar 

  26. Dai J, He K, Sun J (2015) Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision (pp 1635–1643)

  27. Darici E, Rasmussen N, Xiao J, Chaudhari G, Rajput A, Govindan P, Pilanci M (2022) Using deep learning with large aggregated datasets for COVID-19 classification from cough. arXiv preprint arXiv:2201.01669

  28. DeGrave AJ, Janizek JD, Lee SI (2021) AI for radiographic COVID-19 detection selects shortcuts over signal. Nat Mach Intell 3(7):610–619

    Google Scholar 

  29. Dravid A, Katsaggelos AK (2021) Visual explanations for convolutional neural networks via latent traversal of generative adversarial networks. arXiv e-prints, arXiv-2111

  30. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, Ji W (2020) Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology 296(2):E115–E117

    PubMed  Google Scholar 

  31. Geirhos R, Jacobsen JH, Michaelis C, Zemel R, Brendel W, Bethge M, Wichmann FA (2020) Shortcut learning in deep neural networks. Nat Mach Intell 2(11):665–673

    Google Scholar 

  32. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Available at: https://arxiv.org/pdf/1406.2661.pdf

  33. Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A (2012) A kernel two-sample test. J Mach Learn Res 13(1):723–773

    MathSciNet  Google Scholar 

  34. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Zhong NS (2020) Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med 382(18):1708–1720

    CAS  PubMed  Google Scholar 

  35. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved training of Wasserstein gans. arXiv preprint arXiv:1704.00028

  36. Gupta A, Johnson J, Fei-Fei L, Savarese S, Alahi A (2018) Social gan: Socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 2255–2264

  37. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 770–778

  38. Hesthaven JS, Ubbiali S (2018) Non-intrusive reduced order modeling of nonlinear problems using neural networks. J Comput Phys 363:55–78

    ADS  MathSciNet  Google Scholar 

  39. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv Neur Inf Proc Syst 30

  40. Hore A, Ziou D (2010) Image quality metrics: PSNR vs. SSIM. In 2010 20th international conference on pattern recognition. IEEE pp 2366–2369

  41. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. The Lancet 395(10223):497–506

    CAS  Google Scholar 

  42. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 4700–4708

  43. Huang ML, Liao YC (2022) A lightweight CNN-based network on COVID-19 detection using X-ray and CT images. Comput Biol Med 146:105604

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Isola P, Zhu JY, Zhou T, Efros AA (2016) Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004

  45. Jaderberg M, Simonyan K, Zisserman A (2015) Spatial transformer networks. Adv Neural Inf Process Syst 28

  46. Jaeger S, Candemir S, Antani S, Wáng YXJ, Lu PX, Thoma G (2014) Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg 4(6):475

    PubMed  PubMed Central  Google Scholar 

  47. Jiang Y, Chen H, Loew M, Ko H (2020) COVID-19 CT image synthesis with a conditional generative adversarial network. IEEE J Biomed Health Inform 25(2):441–452

    Google Scholar 

  48. Juefei-Xu F, Boddeti VN, Savvides M (2017) Gang of gans: Generative adversarial networks with maximum margin ranking. arXiv preprint arXiv:1704.04865

  49. Kang B, Choe J (2020) Uncertainty quantification of channel reservoirs assisted by cluster analysis and deep convolutional generative adversarial networks. J Petrol Sci Eng 187:106742

    CAS  Google Scholar 

  50. Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH (2020) Essentials for radiologists on COVID-19: an update—radiology scientific expert panel. Radiology 296(2):E113–E114

    PubMed  Google Scholar 

  51. Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, 4396– 4405. https://doi.org/10.1109/CVPR.2019.00453

  52. Kassania SH, Kassanib PH, Wesolowskic MJ, Schneidera KA, Detersa R (2021) Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: a machine learning based approach. Biocybern Biomed Eng 41(3):867–879

    PubMed  PubMed Central  Google Scholar 

  53. Kervadec H, Dolz J, Tang M, Granger E, Boykov Y, Ayed IB (2019) Constrained-CNN losses for weakly supervised segmentation. Med Image Anal 54:88–99

    PubMed  Google Scholar 

  54. Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419

    ADS  Google Scholar 

  55. Kodali N, Abernethy J, Hays J, Kira Z (2017) On convergence and stability of gans. arXiv preprint arXiv:1705.07215

  56. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25

  57. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, et al (2017) Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint

  58. Lehmann EL, Romano JP, Casella G (2005) Testing statistical hypotheses (Vol. 3). New York: springer

  59. Lever J, Krzywinski M, Altman N (2017) Points of significance: Principal component analysis. Nat Methods 14(7):641–643

    CAS  Google Scholar 

  60. Li MY, Muldowney JS (1995) Global stability for the SEIR model in epidemiology. Math Biosci 125(2):155–164

    MathSciNet  CAS  PubMed  Google Scholar 

  61. Lin D, Dai J, Jia J, He K, Sun J (2016) Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 3159–3167

  62. Liu N, Oliver DS (2003) Evaluation of Monte Carlo methods for assessing uncertainty. SPE J 8(02):188–195

    Google Scholar 

  63. Liu S, Cai T, Tang X, Zhang Y, Wang C (2022) COVID-19 diagnosis via chest X-ray image classification based on multiscale class residual attention. Comput Biol Med 149:106065

    PubMed  PubMed Central  Google Scholar 

  64. Liu S, Georgescu B, Xu Z, Yoo Y, Chabin G, Chaganti S, Comaniciu D (2020) 3d tomographic pattern synthesis for enhancing the quantification of covid-19. arXiv preprint arXiv:2005.01903

  65. Mahapatra D, Singh A (2021) Ct image synthesis using weakly supervised segmentation and geometric inter-label relations for covid image analysis. arXiv preprint arXiv:2106.10230

  66. Mahapatra D, Bozorgtabar B, Shao L (2020) Pathological retinal region segmentation from oct images using geometric relation based augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pp 9611–9620

  67. Mahapatra D, Bozorgtabar B, Thiran JP, Reyes M (2018) Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (pp 580–588). Springer, Cham

  68. Mehdi M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784

  69. Menon S, Mangalagiri J, Galita J, Morris M, Saboury B, Yesha Y, Chapman D (2021) CCS-GAN: COVID-19 CT-scan classification with very few positive training images. arXiv preprint arXiv:2110.01605

  70. Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV) pp 565–571. IEEE

  71. Miyato T, Kataoka T, Koyama M, Yoshida Y (2018) Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957

  72. Mosser L, Dubrule O, Blunt MJ (2019) Deepflow: history matching in the space of deep generative models. arXiv preprint arXiv:1905.05749

  73. Motamed S, Khalvati F (2020) Inception augmentation generative adversarial network

  74. Motamed S, Rogalla P, Khalvati F (2021) RANDGAN: randomized generative adversarial network for detection of COVID-19 in chest X-ray. Sci Rep 11(1):1–10

    Google Scholar 

  75. Muguli A, Pinto L, Sharma N, Krishnan P, Ghosh PK, Kumar R, Nanda V (2021) DiCOVA Challenge: Dataset, task, and baseline system for COVID-19 diagnosis using acoustics. arXiv preprint arXiv:2103.09148

  76. Odena A, Olah C, Shlens J (2017) Conditional image synthesis with auxiliary classifier gans. In: International conference on machine learning (pp 2642–2651). PMLR

  77. Oliver DS, Chen Y (2011) Recent progress on reservoir history matching: a review. Comput Geosci 15(1):185–221

    Google Scholar 

  78. Oliver DS, He N, Reynolds AC (1996) Conditioning permeability fields to pressure data. In ECMOR V-5th European conference on the mathematics of oil recovery. European Association of Geoscientists & Engineers. pp cp-101

  79. Oliver DS, Reynolds AC, Liu N (2008) Inverse theory for petroleum reservoir characterization and history matching

  80. Orlandic L, Teijeiro T, Atienza D (2021) The COUGHVID crowdsourcing dataset, a corpus for the study of large-scale cough analysis algorithms. Sci Data, 8(1). https://doi.org/10.1038/s41597-021-00937-4

  81. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Google Scholar 

  82. Park T, Liu MY, Wang TC, Zhu JY (2019) Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp 2337–2346)

  83. Phillips TR, Heaney CE, Smith PN, Pain CC (2021) An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion. Int J Numer Meth Eng 122(15):3780–3811

    MathSciNet  Google Scholar 

  84. Pinheiro PO, Collobert R (2015) From image-level to pixel-level labeling with convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp 1713–1721)

  85. Quilodrán Casas CA (2018) Fast ocean data assimilation and forecasting using a neural-network reduced-space regional ocean model of the north Brazil current

  86. Quilodrán-Casas C, Arcucci R, Mottet L, Guo Y, Pain C (2021) Adversarial autoencoders and adversarial LSTM for improved forecasts of urban air pollution simulations. arXiv preprint arXiv:2104.06297

  87. Quilodrán-Casas C, Silva VL, Arcucci R, Heaney CE, Guo Y, Pain CC (2022) Digital twins based on bidirectional LSTM and GAN for modelling the COVID-19 pandemic. Neurocomputing 470:11–28

    PubMed  Google Scholar 

  88. Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434

  89. Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. 4th International Conference on Learning Representations, ICLR 2016

  90. Rǎdulescu A, Williams C, Cavanagh K (2020) Management strategies in a SEIR-type model of COVID 19 community spread. Sci Rep 10(1):1–16

    ADS  Google Scholar 

  91. Rahman T, Khandakar A, Qiblawey Y, Tahir A, Kiranyaz S, Kashem SBA, Chowdhury ME (2021) Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput Biology and medicine 132:104319

  92. Ramesh KKD, Kumar GK, Swapna K, Datta D, Rajest SS (2021) A review of medical image segmentation algorithms. EAI Endorsed Trans Pervasive Health and Technol 7(27):e6

    Google Scholar 

  93. Razak SM, Jafarpour B (2020) History matching with generative adversarial networks. In: ECMOR XVII (Vol. 2020, No. 1, pp. 1–17). European Association of Geoscientists & Engineers

  94. Rock K, Brand S, Moir J, Keeling MJ (2014) Dynamics of infectious diseases. Rep Prog Phys 77(2):026602

    ADS  MathSciNet  PubMed  Google Scholar 

  95. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention (pp 234–241). Springer, Cham

  96. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans. Advances in neural information processing systems 29

  97. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process 45(11):2673–2681

    ADS  Google Scholar 

  98. Shamil M, Farheen F, Ibtehaz N, Khan IM, Rahman MS (2021) An agent-based modeling of COVID-19: validation, analysis, and recommendations. Cognit Comput 1–12

  99. Sharma A, Mishra PK (2022) Covid-MANet: Multi-task attention network for explainable diagnosis and severity assessment of COVID-19 from CXR images. Pattern Recogn 131:108826

    Google Scholar 

  100. Silva VLS, Emerick AA, Couto P, Alves JLD (2017) History matching and production optimization under uncertainties–Application of closed-loop reservoir management. J Petrol Sci Eng 157:860–874

    CAS  Google Scholar 

  101. Silva VL, Heaney CE, Pain CC (2021a) GAN for time series prediction, data assimilation and uncertainty quantification. arXiv preprint arXiv:2105.13859

  102. Silva VL, Heaney CE, Li Y, Pain CC (2021b) Data Assimilation Predictive GAN (DA-PredGAN): applied to determine the spread of COVID-19. arXiv preprint arXiv:2105.07729

  103. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  104. Snell J, Ridgeway K, Liao R, Roads BD, Mozer MC, Zemel RS (2017) Learning to generate images with perceptual similarity metrics. In: 2017 IEEE International Conference on Image Processing (ICIP) (pp 4277–4281). IEEE

  105. Södergren I, Nodeh MP, Chhipa PC, Nikolaidou K, Kovács G (2021) Detecting COVID-19 from audio recording of coughs using Random Forests and Support Vector Machines. In: Interspeech 2021, Brno, Czechia, 30 August-3 September, 2021 (pp 916–920). International Speech Communication Association

  106. Stolte N (2003) Graphics using implicit surfaces with interval arithmetic based recursive voxelization. In: Sixth IASTED International Conference on Computer Graphics and Imaging (pp 200–205)

  107. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp 2818–2826)

  108. Tabik S, Gómez-Ríos A, Martín-Rodríguez JL, Sevillano-García I, Rey-Area M, Charte D, Herrera F (2020) COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images. IEEE J Biomed Health Inf 24(12):3595–3605

    CAS  Google Scholar 

  109. Tahir AM, Chowdhury ME, Khandakar A, Rahman T, Qiblawey Y, Khurshid U, Hamid T (2021) COVID-19 infection localization and severity grading from chest X-ray images. Comput Biol Med 139:105002

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tang M, Djelouah A, Perazzi F, Boykov Y, Schroers C (2018). Normalized cut loss for weakly-supervised cnn segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 1818–1827

  111. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Soc Indust Appl Math

  112. Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022

  113. Vollmer J, Mencl R, Mueller H (1999) Improved laplacian smoothing of noisy surface meshes. In: Computer graphics forum. Oxford, UK and Boston, USA: Blackwell Publishers Ltd. 18,(3), pp 131–138

  114. Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro PR (2020) Covidgan: data augmentation using auxiliary classifier gan for improved covid-19 detection. Ieee Access 8:91916–91923

    PubMed  Google Scholar 

  115. Wang L, Lin ZQ, Wong A (2020) Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci Rep 10(1):1–12

    CAS  Google Scholar 

  116. Wang TC, Liu MY, Zhu JY, Tao A, Kautz J, Catanzaro B (2018) High-resolution image synthesis and semantic manipulation with conditional gans. In: Proceedings of the IEEE conference on computer vision and pattern recognition pp 8798–8807

  117. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    ADS  PubMed  Google Scholar 

  118. Xiang S, Li H (2017) On the effects of batch and weight normalization in generative adversarial networks. arXiv preprint arXiv:1704.03971

  119. Xiao D, Fang F, Pain C, Hu G (2015) Non-intrusive reduced-order modelling of the Navier-Stokes equations based on RBF interpolation. Int J Numer Meth Fluids 79(11):580–595

    MathSciNet  Google Scholar 

  120. Xiao T, Xu Y, Yang K, Zhang J, Peng Y, Zhang Z (2015b) The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition pp. 842–850

  121. Xie Y, Franz E, Chu M, Thuerey N (2018) Tempogan: A temporally coherent, volumetric gan for super-resolution fluid flow. ACM Transactions on Graphics (TOG) 37(4):1–15

    Google Scholar 

  122. Xu G, Song Z, Sun Z, Ku C, Yang Z, Liu C, Xu W (2019) Camel: A weakly supervised learning framework for histopathology image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision pp 10682–10691)

  123. Xu J, Li Z, Du B, Zhang M, Liu J (2020) Reluplex made more practical: Leaky ReLU. In: 2020 IEEE Symposium on Computers and Communications (ISCC) (pp 1–7). IEEE

  124. Xu T, Zhang P, Huang Q, Zhang H, Gan Z, Huang X, He X (2017) Attngan: Fine-grained text to image generation with attentional generative adversarial networks. arXiv preprint

  125. Yadav A, Shah S, Xu Z, Jacobs D, Goldstein T (2018) Stabilizing adversarial nets with prediction methods

  126. Yang D, Xu D, Zhou SK, Georgescu B, Chen M, Grbic S, Comaniciu D (2017) Automatic liver segmentation using an adversarial image-to-image network. In: International conference on medical image computing and computer-assisted intervention (pp. 507–515). Springer, Cham

  127. Yang J, Kannan A, Batra D, Parikh D (2017) Lr-gan: Layered recursive generative adversarial networks for image generation. arXiv preprint arXiv:1703.01560

  128. Yang X, He X, Zhao J, Zhang Y, Zhang S, Xie P (2020) COVID-CT-dataset: a CT scan dataset about COVID-19. arXiv preprint arXiv:2003.13865

  129. Yi X, Walia E, Babyn P (2019) Generative adversarial network in medical imaging: A review. Med Image Anal 58:101552. https://doi.org/10.1016/j.media.2019.101552

    Article  PubMed  Google Scholar 

  130. Zhao A, Balakrishnan G, Durand F, Guttag JV, Dalca AV (2019) Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the ieee/cvf conference on computer vision and pattern recognition pp. 8543–8553

  131. Zhao J, Zhang Y, He X, Xie P (2020a) Covid-ct-dataset: a ct scan dataset about covid-19. arXiv preprint arXiv:2003.13865, 490

  132. Zhao W, Zhong Z, Xie X, Yu Q, Liu J (2020) Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. AJR Am J Roentgenol 214(5):1072–1077

    PubMed  Google Scholar 

  133. Zhong Z, Sun AY, Jeong H (2019) Predicting CO2 plume migration in heterogeneous formations using conditional deep convolutional generative adversarial network. Water Resour Res 55(7):5830–5851

    ADS  CAS  Google Scholar 

  134. Zhou S, Gordon M, Krishna R, Narcomey A, Fei-Fei LF, Bernstein M (2019a) Hype: A benchmark for human eye perceptual evaluation of generative models. Adv Neural Inf Process Syst 32

  135. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2019) Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging 39(6):1856–1867

    PubMed  PubMed Central  Google Scholar 

  136. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision (pp 2223–2232)

  137. Zhu P, Abdal R, Qin Y, Wonka P (2020) Sean: Image synthesis with semantic region-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pp 5104–5113

  138. Zunair H (2021) GitHub - hasibzunair/synthetic-covid-cxr-dataset: [ICML’2021 WCB] Synthetic COVID-19 Chest X-ray dataset for computer-aided diagnosis. GitHub. https://github.com/hasibzunair/synthetic-covid-cxr-dataset

  139. Zunair H, Hamza AB (2021) Synthesis of COVID-19 chest X-rays using unpaired image-to-image translation. Soc Netw Anal Min 11(1):1–12

    Google Scholar 

  140. Zunair H, Hamza AB (2021b) Synthetic COVID-19 Chest X-ray dataset for computer-aided diagnosis. arXiv preprint arXiv:2106.09759

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hum Yan Chai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Datasets

COVID-19 CT segmentation dataset. [22]: https://medicalsegmentation.com/covid19/

Covid-19 CXR Database initiative [115]: https://github.com/lindawangg/COVID-Net

COVID-19 image data collection [20]: https://github.com/ieee8023/covid-chestxray-dataset

COVID-CT-Dataset [128]: https://github.com/UCSD-AI4H/COVID-CT

COVIDGR datasets [108]: https://github.com/ari-dasci/OD-covidgr#covidgr-10

COVID-QU-Ex Dataset [109]:https://www.kaggle.com/datasets/anasmohammedtahir/covidqu

Synthetic COVID-19 chest X-ray [138]: https://github.com/hasibzunair/synthetic-covid-cxr-dataset/releases/tag/v0.1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, Y.S.S.M., Mokayed, H., Nikolaidou, K. et al. How GANs assist in Covid-19 pandemic era: a review. Multimed Tools Appl 83, 29915–29944 (2024). https://doi.org/10.1007/s11042-023-16597-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16597-y

Keywords