[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Identification of major QTLs for flowering and maturity in soybean by genotyping-by-sequencing analysis

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

As soybean is highly sensitive to photoperiod, and the cultivation area of soybean is restricted to a narrow latitude region. The adaptability of soybean growth across wide latitude areas is owing to the rich variations of genes conditioning the flowering time and maturity. Identification of new quantitative trait loci (QTLs) and validation of the potential genes are beneficial to clarify the complex regulatory network in the photoperiod pathway. In the present study, high-density genetic maps were performed using genotyping-by-sequencing (GBS) with two recombinant inbred line (RIL) populations developed from the crosses between cultivated soybean varieties, Noir × Archer (NA) and Noir × M336-1 (NM) for evaluating the traits of flowering time (R1), maturity (R8), and reproductive period (RP) under long-day (LD) conditions. In total, we identified four stable QTLs on chromosomes 4, 6, 18, and 19 in NA and NM RILs. The QTLs on chromosomes 6 and 19 corresponded to the maturity genes E1 and E3, respectively. Another major QTL on chromosome 18 was detected in both NA and NM populations and played pivotal roles in the regulation of flowering time, maturity, and reproductive period. The QTL mapped to chromosome 4 was shown to mainly regulate the maturity time by affecting the post-flowering stage in NA population. The results in this study will provide new loci and fundamental resources to elucidate the genetic basis related to flowering, maturity, and reproductive period and will be helpful for further research on soybean flowering and molecular breeding under LD conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernard RL (1971) Two major genes for time of flowering and maturity in soybeans. Crop Sci 11:242–244

    Google Scholar 

  • Bonato ER, Vello NA (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22:229–232

    Google Scholar 

  • Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescent-day length conditions. Can J Genet Cytol 13:703–707

    Google Scholar 

  • Buzzell RI, Voldeng HD (1980) Inheritance of insensitivity to long day length. Soybean Genet Newsl 7:26–29

    Google Scholar 

  • Cheng L, Wang Y, Zhang C, Wu C, Xu J, Zhu H, Leng J, Bai Y, Guan R, Hou W, Zhang L, Han T (2011) Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean. Theor Appl Genet 123:421–429

    PubMed  Google Scholar 

  • Cheng W, Liu F, Li M, Hu X, Chen H, Pappoe F (2015) Variation detection based on next-generation sequencing of type Chinese 1 strains of Toxoplasma gondii with different virulence from China. BMC Genomics 16:888

    PubMed  PubMed Central  Google Scholar 

  • Cober ER, Morrison MJ (2010) Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet 120:1005–1012

    CAS  PubMed  Google Scholar 

  • Cober ER, Voldeng HD (2001) A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41:698–701

    Google Scholar 

  • Cober ER, Tanner JW, Voldeng HD (1996) Genetic control of photoperiod response in early-maturing, near-isogenic soybean lines. Crop Sci 36:601–605

    Google Scholar 

  • Cober ER, Molnar SJ, Charette M, Voldeng HD (2010) A new locus for early maturity in soybean. Crop Sci 50:524–527

    Google Scholar 

  • Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML (2013) Special features of RAD sequencing data: implications for genotyping. Mol Ecol 22:3151–3164

    CAS  PubMed  Google Scholar 

  • Emami H, Kempken F (2019) PRECOCIOUS1 (POCO1), a mitochondrial pentatricopeptide repeat (PPR) protein affects flowering time in Arabidopsis thaliana. Plant J

  • Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R (2017) Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 18(1):161

    PubMed  PubMed Central  Google Scholar 

  • Fang C, Chen L, Nan H, Kong L, Li Y, Zhang H, Li H, Li T, Tang Y, Hou Z, Dong L, Cheng Q, Lin X, Zhao X, Yuan X, Liu B, Kong F, Lu S (2019) Rapid identification of consistent novel QTLs underlying long-juvenile trait in soybean by multiple genetic populations and genotyping-by-sequencing. Mol Breed 39(6)

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L). Merrill Crop Sci 11:929–931

    Google Scholar 

  • Hanson WD (1985) Association of seed yield with partitioned lengths of the reproductive period in soybean genotypes. Crop Sci 25:525–529

    Google Scholar 

  • Harada K, Watanabe S, Xia Z, Tsubokura Y, Yamanaka N, Anai T (2011) Positional cloning of the responsible genes for maturity loci E1, E2 and E3 in soybean. Soybean - Genetics and Novel Techniques for Yield Enhancement. InTech:51–76

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang BJ, Nan HY, Gao YF, Tang LL et al (2014) Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS One 9(8):e106042

    PubMed  PubMed Central  Google Scholar 

  • Kim KS, Diers BW, Hyten DL, Rouf Mian MA, Shannon JG, Nelson RL (2012) Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations. Theor Appl Genet 125(6):1353–1369

    PubMed  Google Scholar 

  • Kong F, Nan H, Cao D, Li Y, Wu F, Wang J, Lu S, Yuan X, Cober ER, Abe J, Liu B (2014) A new dominant gene conditions early flowering and maturity in soybean. Crop Sci 54:2529–2535

    Google Scholar 

  • Kong L, Lu S, Wang Y, Fang C, Wang F, Nan H, Su T, Li S, Zhang F, Li X, Zhao X, Yuan X, Liu B, Kong F (2018) Quantitative trait locus mapping of flowering time and maturity in soybean using next-generation sequencing-based analysis. Front Plant Sci 9:995

    PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Fang C, Xu M, Zhang F, Lu S, Nan H, Su T, Li S, Zhao X, Kong L, Yuan X, Liu B, Abe J, Cober ER, Kong F (2017) Quantitative trait locus mapping of soybean maturity gene E6. Crop Sci 57:2547–2554

    CAS  Google Scholar 

  • Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180(2):995–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober ER, Weller JL, Liu B, Hou X, Tian Z, Kong F (2017) Natural variation at the soybean j locus improves adaptation to the tropics and enhances yield. Nat Genet 49:773–779

    CAS  PubMed  Google Scholar 

  • Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller JL, Kong F (2020) Stepwise selection on homologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52(4):1–9

    Google Scholar 

  • Mandel MA, Yanofsky MF (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7:1763–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  • McBlain BA, Bernard RL (1987) A new gene affecting the time of flowering and maturity in soybeans. J Hered 78:160–162

    Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3(2):87–103

    CAS  Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Google Scholar 

  • Ray JD, Hinson K, Mankono JEB, Malo MF (1995) Genetic control of a long-juvenile trait in soybean. Crop Sci 35:1001–1006

    Google Scholar 

  • Samanfar B, Molnar SJ, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober ER (2017) Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet 130(2):377–390

    CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  PubMed  Google Scholar 

  • Tsubokura Y, Matsumura H, Xu M, Nakashima H, Liu B, Anai T, Kong F, Yuan X, Kanamori H, Katayose Y, Takahash R, Harada K, Abe J (2013) Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy 3:117–134

    CAS  Google Scholar 

  • Tsubokura Y, Watanabe S, Xia Z, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K (2014) Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot 113(3):429–441

    CAS  PubMed  Google Scholar 

  • Upadhyay AP, Ellis RH, Summerfield RJ, Roberts ER, Qi A (1994) Characterization of photo thermal flowering responses in maturity isolines of soybean (Glycine (L.) Merrill) cv. Clark. Ann Bot 74:87–96

    CAS  PubMed  Google Scholar 

  • Wang F, Nan H, Chen L, Fang C, Zhang H, Su T, Li S, Cheng Q, Dong L, Liu B, Kong F, Lu S (2019) A new dominant locus, E11, controls early flowering time and maturity in soybean. Mol Breed 39(5):70

    Google Scholar 

  • Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182(4):1251–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188(2):395–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazakif T, Lü S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci U S A 109(32):E2155–E2164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T, Abe J (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai H, Lü SX, Wu HY, Zhang YP, Zhang XZ, Yang JY, Wang YY, Yang G, Qiu HM, Cui TT, Xia ZJ (2015) Diurnal expression pattern, allelic variation, and association analysis reveal functional features of the e1 gene in control of photoperiodic flowering in soybean. PLoS One 10(8):e0135909

    PubMed  PubMed Central  Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Mrs. Yafeng Liu for phenotyping and managing the filed.

Funding

This work was supported by the National Natural Science Foundation of China (31930083, 31725021), the Major Program of Guangdong Basic and Applied Research (2019B030302006), and the Open Project Foundation of National Key Laboratory for Crop Genetics and Germplasm Enhancement (ZW201901).

Author information

Authors and Affiliations

Authors

Contributions

FK designed the experiments. LW, CF, LL, TZ, KK, TS, SL, LC, QC, and LD carried out the experiments. LW, FK, BL, and SL analyzed the data. LW, FK, and SL wrote the paper.

Corresponding authors

Correspondence to Baohui Liu or Sijia Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Supplementary Fig. 1 Identification of alleles at the E1, E2, E3 and E4 loci of Noir, Archer and M336-1. a Discrimination of E1 and e1-as alleles. b Discrimination of E2 and e2 alleles. c Discrimination of E3 and e3-fs alleles. d-h Discrimination of E4 between e4-oto, e4-tsu, e4-kam, e4-kes and e4-SORE-1. Supplementary Fig. 2 Annotation information of genes in the interval of QTL detected on chromosome 18 through Gene ontology (GO) analysis. Supplementary Fig. 3 Annotation information of genes in the interval of QTL detected on chromosome 4 through Gene ontology (GO) analysis (PPT 433 kb)

ESM 2

(XLS 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Fang, C., Liu, J. et al. Identification of major QTLs for flowering and maturity in soybean by genotyping-by-sequencing analysis. Mol Breeding 40, 99 (2020). https://doi.org/10.1007/s11032-020-01178-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-020-01178-w

Keywords

Navigation