[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Activation of AMPK inhibits Galectin-3-induced pulmonary artery smooth muscle cells proliferation by upregulating hippo signaling effector YAP

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Galectin-3(Gal-3) is an effective regulator in the pathological process of pulmonary arterial hypertension (PAH). However, the detailed mechanisms underlying Gal-3 contribution to PAH are not yet entirely clear. The aim of the present study was to explore these issues. Proliferation of rat pulmonary arterial smooth muscle cells (PASMCs) was determined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Small interfering RNA (siRNA) was applied to silence the expression of yes-associated protein (YAP) and Forkhead box M1 (FOXM1). The protein expression and phosphorylation were measured by immunoblotting. The subcellular location of YAP was determined using immunoblotting and immunofluorescence. Gal-3-stimulated PASMCs proliferation in a time- and dose-dependent manner, this was accompanied with, YAP upregulation, dephosphorylation, and nucleus translocation. Gal-3 further increased FOXM1 and cyclinD1 expression via YAP activation. Interfering YAP/FOXM1 axis suppressed Gal-3-induced PASMCs proliferation. Activation of AMPK also inhibited Gal-3-triggered cells proliferation by targeting YAP/FOXM1/cyclinD1 pathway. Gal-3 induced PASMCs proliferation by regulating YAP/FOXM1/cyclinD1 signaling cascade, and activation of AMPK targeted on this axis and suppressed Gal-3-stimulated PASMCs proliferation. Our study provides novel therapeutic targets for prevention and treatment of PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Abbreviations

Gal-3:

Galectin-3

PAH:

Pulmonary arterial hypertension

PASMCs:

Pulmonary arterial smooth muscle cells

siRNA:

Small interfering RNA

YAP:

Yes-associated protein

FOXM1:

Forkhead box M1

AMPK:

Metformin-activated adenosine monophosphate-activated protein kinase

LATS1/2:

Large tumor suppressor kinase (LATS1/2)

PBS:

Phosphate-buffered saline

MTT:

3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide

SEM:

Standard error of the mean

References

  1. Thenappan T, Ormiston ML, Ryan JJ, Archer SL (2018) Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ 360:j5492. https://doi.org/10.1136/bmj.j5492

    Article  PubMed  PubMed Central  Google Scholar 

  2. McGoon MD, Benza RL, Escribano-Subias P, Jiang X, Miller DP, Peacock AJ, Pepke-Zaba J, Pulido T, Rich S, Rosenkranz S, Suissa S, Humbert M (2014) Pulmonary arterial hypertension: epidemiology and registries. Turk Kardiyol Dern Ars 42(Suppl 1):67–77

    PubMed  Google Scholar 

  3. Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F (2011) Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol 8(8):443–455. https://doi.org/10.1038/nrcardio.2011.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rahimian R, Beland LC, Kriz J (2018) Galectin-3: mediator of microglia responses in injured brain. Drug Discov Today 23(2):375–381. https://doi.org/10.1016/j.drudis.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Kasper M, Hughes RC (1996) Immunocytochemical evidence for a modulation of galectin 3 (Mac-2), a carbohydrate binding protein, in pulmonary fibrosis. J Pathol 179(3):309–316

    Article  CAS  Google Scholar 

  6. Villa-Verde DMS, Silva-Monteiro E, Jasiulionis MG, Farias-de-Oliveira DA, Brentani RR, Savino W, Chammas R (2002) Galectin-3 modulates carbohydrate-dependent thymocyte interactions with the thymic microenvironment. Eur J Immunol 32(5):1434–1444. https://doi.org/10.1002/1521-4141(200205)32:5%3c1434::Aid-immu1434%3e3.0.Co;2-m

    Article  CAS  PubMed  Google Scholar 

  7. Castronovo V, Van Den BrÛLe FA, Jackers P, Clausse N, Liu F-T, Gillet C, Sobel ME (1996) Decreased expression of galectin-3 is associated with progression of human breast cancer. J Pathol 179(1):43–48. https://doi.org/10.1002/(sici)1096-9896(199605)179:1%3c43::Aid-path541%3e3.0.Co;2-n

    Article  CAS  PubMed  Google Scholar 

  8. Pacis RA, Pilat MJ, Pienta KJ, Wojno K, Raz A, Hogan V, Cooper CR (2000) Decreased galectin-3 expression in prostate cancer. Prostate 44(2):118–123. https://doi.org/10.1002/1097-0045(20000701)44:2%3c118::Aid-pros4%3e3.0.Co;2-u

    Article  CAS  PubMed  Google Scholar 

  9. Dumic J, Dabelic S, Flogel M (2006) Galectin-3: an open-ended story. Biochim Biophys Acta 1760(4):616–635. https://doi.org/10.1016/j.bbagen.2005.12.020

    Article  CAS  PubMed  Google Scholar 

  10. Dong R, Zhang M, Hu Q, Zheng S, Soh A, Zheng Y, Yuan H (2018) Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int J Mol Med 41(2):599–614. https://doi.org/10.3892/ijmm.2017.3311

    Article  CAS  PubMed  Google Scholar 

  11. Calvier L, Legchenko E, Grimm L, Sallmon H, Hatch A, Plouffe BD, Schroeder C, Bauersachs J, Murthy SK, Hansmann G (2016) Galectin-3 and aldosterone as potential tandem biomarkers in pulmonary arterial hypertension. Heart 102(5):390–396. https://doi.org/10.1136/heartjnl-2015-308365

    Article  CAS  PubMed  Google Scholar 

  12. Hao M, Li M, Li W (2017) Galectin-3 inhibition ameliorates hypoxia-induced pulmonary artery hypertension. Mol Med Rep 15(1):160–168. https://doi.org/10.3892/mmr.2016.6020

    Article  CAS  PubMed  Google Scholar 

  13. Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4):811–828. https://doi.org/10.1016/j.cell.2015.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poma AM, Torregrossa L, Bruno R, Basolo F, Fontanini G (2018) Hippo pathway affects survival of cancer patients: extensive analysis of TCGA data and review of literature. Sci Rep 8(1):10623. https://doi.org/10.1038/s41598-018-28928-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bella L, Zona S, Nestal de Moraes G, Lam EW (2014) FOXM1: a key oncofoetal transcription factor in health and disease. Semin Cancer Biol 29:32–39. https://doi.org/10.1016/j.semcancer.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  16. Bertero T, Oldham WM, Cottrill KA, Pisano S, Vanderpool RR, Yu Q, Zhao J, Tai Y, Tang Y, Zhang YY, Rehman S, Sugahara M, Qi Z, Gorcsan J III, Vargas SO, Saggar R, Saggar R, Wallace WD, Ross DJ, Haley KJ, Waxman AB, Parikh VN, De Marco T, Hsue PY, Morris A, Simon MA, Norris KA, Gaggioli C, Loscalzo J, Fessel J, Chan SY (2016) Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. J Clin Invest 126(9):3313–3335. https://doi.org/10.1172/JCI86387

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yan D, Li G, Zhang Y, Liu Y (2019) Angiotensin-converting enzyme 2 activation suppresses pulmonary vascular remodeling by inducing apoptosis through the Hippo signaling pathway in rats with pulmonary arterial hypertension. Clin Exp Hypertens 41(6):589–598. https://doi.org/10.1080/10641963.2019.1583247

    Article  CAS  PubMed  Google Scholar 

  18. Bertero T, Cottrill KA, Lu Y, Haeger CM, Dieffenbach P, Annis S, Hale A, Bhat B, Kaimal V, Zhang YY, Graham BB, Kumar R, Saggar R, Saggar R, Wallace WD, Ross DJ, Black SM, Fratz S, Fineman JR, Vargas SO, Haley KJ, Waxman AB, Chau BN, Fredenburgh LE, Chan SY (2015) Matrix remodeling promotes pulmonary hypertension through feedback mechanoactivation of the YAP/TAZ-miR-130/301 circuit. Cell Rep 13(5):1016–1032. https://doi.org/10.1016/j.celrep.2015.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kudryashova TV, Goncharov DA, Pena A, Kelly N, Vanderpool R, Baust J, Kobir A, Shufesky W, Mora AL, Morelli AE, Zhao J, Ihida-Stansbury K, Chang B, DeLisser H, Tuder RM, Kawut SM, Sillje HH, Shapiro S, Zhao Y, Goncharova EA (2016) HIPPO-integrin-linked kinase cross-talk controls self-sustaining proliferation and survival in pulmonary hypertension. Am J Respir Crit Care Med 194(7):866–877. https://doi.org/10.1164/rccm.201510-2003OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ajani JA, Estrella JS, Chen Q, Correa AM, Ma L, Scott AW, Jin J, Liu B, Xie M, Sudo K, Shiozaki H, Badgwell B, Weston B, Lee JH, Bhutani MS, Onodera H, Suzuki K, Suzuki A, Ding S, Hofstetter WL, Johnson RL, Bresalier RS, Song S (2018) Galectin-3 expression is prognostic in diffuse type gastric adenocarcinoma, confers aggressive phenotype, and can be targeted by YAP1/BET inhibitors. Br J Cancer 118(1):52–61. https://doi.org/10.1038/bjc.2017.388

    Article  CAS  PubMed  Google Scholar 

  21. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262. https://doi.org/10.1038/nrm3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Omura J, Satoh K, Kikuchi N, Satoh T, Kurosawa R, Nogi M, Otsuki T, Kozu K, Numano K, Suzuki K, Sunamura S, Tatebe S, Aoki T, Sugimura K, Miyata S, Hoshikawa Y, Okada Y, Shimokawa H (2016) Protective roles of endothelial AMP-activated protein kinase against hypoxia-induced pulmonary hypertension in mice. Circ Res 119(2):197–209. https://doi.org/10.1161/CIRCRESAHA.115.308178

    Article  CAS  PubMed  Google Scholar 

  23. Igata M, Motoshima H, Tsuruzoe K, Kojima K, Matsumura T, Kondo T, Taguchi T, Nakamaru K, Yano M, Kukidome D, Matsumoto K, Toyonaga T, Asano T, Nishikawa T, Araki E (2005) Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circ Res 97(8):837–844. https://doi.org/10.1161/01.RES.0000185823.73556.06

    Article  CAS  PubMed  Google Scholar 

  24. Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S, Lim DS, Guan KL (2015) Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 17(4):500–510. https://doi.org/10.1038/ncb3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jin D, Guo J, Wang D, Wu Y, Wang X, Gao Y, Shao C, Xu X, Tan S (2018) The antineoplastic drug metformin downregulates YAP by interfering with IRF-1 binding to the YAP promoter in NSCLC. EBioMedicine 37:188–204. https://doi.org/10.1016/j.ebiom.2018.10.044

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu Y, Liu L, Zhang Y, Wang G, Han D, Ke R, Li S, Feng W, Li M (2014) Activation of AMPK inhibits pulmonary arterial smooth muscle cells proliferation. Exp Lung Res 40(5):251–258. https://doi.org/10.3109/01902148.2014.913092

    Article  CAS  PubMed  Google Scholar 

  27. Provencher S, Archer SL, Ramirez FD, Hibbert B, Paulin R, Boucherat O, Lacasse Y, Bonnet S (2018) Standards and methodological rigor in pulmonary arterial hypertension preclinical and translational research. Circ Res 122(7):1021–1032. https://doi.org/10.1161/CIRCRESAHA.117.312579

    Article  CAS  PubMed  Google Scholar 

  28. Luo H, Liu B, Zhao L, He J, Li T, Zha L, Li X, Qi Q, Liu Y, Yu Z (2017) Galectin-3 mediates pulmonary vascular remodeling in hypoxia-induced pulmonary arterial hypertension. J Am Soc Hypertens 11(10(1878-7436 (Electronic))):673–683

    Article  CAS  Google Scholar 

  29. He J, Li X, Luo H, Li T, Zhao L, Qi Q, Liu Y, Yu Z (2017) Galectin-3 mediates the pulmonary arterial hypertension-induced right ventricular remodeling through interacting with NADPH oxidase 4. J Am Soc Hypertens 11(5):275-289 e272. https://doi.org/10.1016/j.jash.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  30. He S, Liao B, Deng Y, Su C, Tuo J, Liu J, Yao S, Xu L (2017) MiR-216b inhibits cell proliferation by targeting FOXM1 in cervical cancer cells and is associated with better prognosis. BMC Cancer 17(1):673. https://doi.org/10.1186/s12885-017-3650-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomberg-Maitland M, Bull TM, Saggar R, Barst RJ, Elgazayerly A, Fleming TR, Grimminger F, Rainisio M, Stewart DJ, Stockbridge N, Ventura C, Ghofrani AH, Rubin LJ (2013) New trial designs and potential therapies for pulmonary artery hypertension. J Am Coll Cardiol 62(25 Suppl):D82-91. https://doi.org/10.1016/j.jacc.2013.10.026

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci USA 93(13):6737–6742. https://doi.org/10.1073/pnas.93.13.6737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fulton DJR, Li X, Bordan Z, Wang Y, Mahboubi K, Rudic RD, Haigh S, Chen F, Barman SA (2019) Galectin-3: a harbinger of reactive oxygen species, fibrosis, and inflammation in pulmonary arterial hypertension. Antioxid Redox Signal 31(14):1053–1069. https://doi.org/10.1089/ars.2019.7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moya IM, Halder G (2019) Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 20(4):211–226. https://doi.org/10.1038/s41580-018-0086-y

    Article  CAS  PubMed  Google Scholar 

  35. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S (2011) The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147(4):759–772. https://doi.org/10.1016/j.cell.2011.09.048

    Article  CAS  PubMed  Google Scholar 

  36. Dieffenbach PB, Haeger CM, Coronata AMF, Choi KM, Varelas X, Tschumperlin DJ, Fredenburgh LE (2017) Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2. Am J Physiol Lung Cell Mol Physiol 313(3):L628–L647. https://doi.org/10.1152/ajplung.00173.2017

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Hu G, Liu F, Wang X, Wu M, Schwarz JJ, Zhou J (2014) Deletion of yes-associated protein (YAP) specifically in cardiac and vascular smooth muscle cells reveals a crucial role for YAP in mouse cardiovascular development. Circ Res 114(6):957–965. https://doi.org/10.1161/CIRCRESAHA.114.303411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laoukili J, Stahl M, Medema RH (2007) FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta 1775(1):92–102. https://doi.org/10.1016/j.bbcan.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  39. Gartel AL (2017) FOXM1 in cancer: interactions and vulnerabilities. Cancer Res 77(12):3135–3139. https://doi.org/10.1158/0008-5472.CAN-16-3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen Y, Li Y, Xue J, Gong A, Yu G, Zhou A, Lin K, Zhang S, Zhang N, Gottardi CJ, Huang S (2016) Wnt-induced deubiquitination FoxM1 ensures nucleus beta-catenin transactivation. EMBO J 35(6):668–684. https://doi.org/10.15252/embj.201592810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mizuno T, Murakami H, Fujii M, Ishiguro F, Tanaka I, Kondo Y, Akatsuka S, Toyokuni S, Yokoi K, Osada H, Sekido Y (2012) YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene 31(49):5117–5122. https://doi.org/10.1038/onc.2012.5

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Hock JM, Van Beneden RJ, Li X (2014) Aberrant overexpression of FOXM1 transcription factor plays a critical role in lung carcinogenesis induced by low doses of arsenic. Mol Carcinog 53(5):380–391. https://doi.org/10.1002/mc.21989

    Article  CAS  PubMed  Google Scholar 

  43. Balli D, Zhang Y, Snyder J, Kalinichenko VV, Kalin TV (2011) Endothelial cell-specific deletion of transcription factor FoxM1 increases urethane-induced lung carcinogenesis. Cancer Res 71(1):40–50. https://doi.org/10.1158/0008-5472.CAN-10-2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A, Braga de Freitas G, Goncalves RA, Gupta D, Gupta R, Ha SR, Hemming IA, Jaggar M, Jakobsen E, Kumari P, Lakkappa N, Marsh APL, Mitlohner J, Ogawa Y, Paidi RK, Ribeiro FC, Salamian A, Saleem S, Sharma S, Silva JM, Singh S, Sulakhiya K, Tefera TW, Vafadari B, Yadav A, Yamazaki R, Seidenbecher CI (2019) The energetic brain: a review from students to students. J Neurochem 151(2):139–165. https://doi.org/10.1111/jnc.14829

    Article  CAS  PubMed  Google Scholar 

  45. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66(6):789–800. https://doi.org/10.1016/j.molcel.2017.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carling D (2017) AMPK signalling in health and disease. Curr Opin Cell Biol 45:31–37. https://doi.org/10.1016/j.ceb.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  47. Viollet B, Horman S, Leclerc J, Lantier L, Foretz M, Billaud M, Giri S, Andreelli F (2010) AMPK inhibition in health and disease. Crit Rev Biochem Mol Biol 45(4):276–295. https://doi.org/10.3109/10409238.2010.488215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, Ji SY, Nunez D, Ramachandran A, Anaya-Cisneros M, Tian R, Lefer DJ (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 104(3):403–411. https://doi.org/10.1161/CIRCRESAHA.108.190918

    Article  CAS  PubMed  Google Scholar 

  49. Zhang CS, Li M, Ma T, Zong Y, Cui J, Feng JW, Wu YQ, Lin SY, Lin SC (2016) Metformin activates AMPK through the lysosomal pathway. Cell Metab 24(4):521–522. https://doi.org/10.1016/j.cmet.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  50. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761. https://doi.org/10.1101/gad.1602907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lancaster MA, Huch M (2019) Disease modelling in human organoids. Dis Model Mech. https://doi.org/10.1242/dmm.039347

    Article  PubMed  PubMed Central  Google Scholar 

  52. Salman MM, Marsh G, Kusters I, Delince M, Di Caprio G, Upadhyayula S, de Nola G, Hunt R, Ohashi KG, Gray T, Shimizu F, Sano Y, Kanda T, Obermeier B, Kirchhausen T (2020) Design and validation of a human brain endothelial microvessel-on-a-chip open microfluidic model enabling advanced optical imaging. Front Bioeng Biotechnol 8:573775. https://doi.org/10.3389/fbioe.2020.573775

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers 81970050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manxiang Li.

Ethics declarations

Conflict of interest

The authors have stated that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, W., Zhu, Y. et al. Activation of AMPK inhibits Galectin-3-induced pulmonary artery smooth muscle cells proliferation by upregulating hippo signaling effector YAP. Mol Cell Biochem 476, 3037–3049 (2021). https://doi.org/10.1007/s11010-021-04131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04131-3

Keywords

Navigation