[go: up one dir, main page]

Skip to main content
Log in

Effect of addictives on polymorphic transition of ε-CL-20 in castable systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to explore the law of polymorphic transformation in the process of preparing hexanitrohexaazaisowurtzitane (CL-20)-based composite explosives in cast-cured method, the polymorphic transition of CL-20 crystal under heat stimulation was investigated by X-ray diffraction and differential scanning calorimetric method, respectively, and the effects of different addictives (mainly involved in castable systems) on polymorphic transition of CL-20 were elaborately explored. The transition mechanism was systemically analyzed from the point of view of kinetic and thermodynamic. The experiment results showed that the polymorphic transition was closely related to temperature and ambient surroundings, and the influence of different additives was not consistent in the process of polymorphic transition. In addictives with higher dipole moment or solubility of CL-20, ε-form could easily be polarized and tend to transform into γ-form and the process occurred in fluid medium was much easier than that in solid matrix. The investigation contributes to comprehend the polymorphic transformation mechanism of CL-20 and provides guidance for effective control on the CL-20 polymorphs in preparing CL-20-based composite explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nielsen AT. Synthesis of polynitropolyaza caged nitramines. chemical propulsion information agency; 1987, Publication no.473.

  2. Nielsen AT. Caged polynitramine compound, US patent 5693794. United States Dept. of the Navy, USA. 1997.

  3. Simpson RL, Urtiev PA, Ornellas DL, et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate [J]. Propellant Explos Pyrotech. 1997;22(5):249–55.

    Article  CAS  Google Scholar 

  4. Bolotina NB, Hardie MJ, Speer RL, et al (2004) Energetic materials: variable-temperature crystal structures of γ- and ε-HNIW polymorphs. J Appl Cryst 37:808.

    Article  CAS  Google Scholar 

  5. ter Host JH, Kramer HJM, van Rosmalen GM, Jansens PJ. Molecular modelling of polymorphs. HMX polymorphs. J Cryst Growth. 2002;237–239:2215–20.

    Google Scholar 

  6. Sikder AK, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater. 2004;112:1–15.

    Article  CAS  Google Scholar 

  7. Sivabalan R, Gore GM, Nair UR, Saikia A, Venugopalan S, Gandhe BR. Study on ultrasound assisted precipitation of CL-20 and its effect on morphology and sensitivity. J Hazard Mater. 2007;139:199–203.

    Article  CAS  Google Scholar 

  8. Vrcelj RM, Gallagher HG, Sherwood JN. Polymorphism in 2,4,6-trinitrotoluene cryatallized from solution. J Am Chem Soc. 2001;123:2291–5.

    Article  CAS  Google Scholar 

  9. Vrcelj RM, Sherwood JN, Kennedy AR, Gallagher HG, Gelbrich T. Polymorphism in 2,4,6-trinitrotoluene. Cryst Growth Des. 2003;3:1027–31.

    Article  CAS  Google Scholar 

  10. Gallaghera HG, Vrceljb RM, Sherwood JN. The crystal growth and perfection of 2,4,6-trinitrotoluene. J Cryst Growth. 2003;250:486–98.

    Article  Google Scholar 

  11. Parrish DA, Deschamps JR, Gilardi RD, Butcher RJ. Polymorphs of picryl bromide. Cryst Growth Des. 2008;8:57–62.

    Article  CAS  Google Scholar 

  12. Ciezak JA, Jenkins TA, Liu Z. Evidence for a high-pressure phase transition of ε-2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) using vibrational spectroscopy. Propellants Explos Pyrotech. 2007;32(6):472–7.

    Article  CAS  Google Scholar 

  13. Lee M-H, Kim J-H, Park Y-C, et al. Control of crystal density of ε-hexanitrohexaazaisowurzitane in evaporation crystallization. Ind Eng Chem Res. 2007;46:1500–4.

    Article  CAS  Google Scholar 

  14. Jiang X, Guo X, Ren H, et al. Control of particle Size and shape of ε-HNIW in drowning-out crystallization. J Chem Eng Jpn. 2012;45(6):380–6.

    Article  CAS  Google Scholar 

  15. Jiang X, Guo X, Ren H, et al. Preparation and characterization of desensitized ε-HNIW in solvent–antisolvent recrystallizations. Cent Eur J Energ Mater. 2012;9(3):139–46.

    Google Scholar 

  16. Yu L, Jiang X, Guo X, et al. Effects of binders and graphite on the sensitivity of ε-HNIW. J Therm Anal Calorim. 2013;112:1343–9.

    Article  CAS  Google Scholar 

  17. Yan Q-L, Zeman S, Svoboda R, et al. The effect of crystal structure on the thermal reactivity of CL-20 and its C4-bonded explosives. J Therm Anal Calorim. 2013;112(2):837–49.

    Article  CAS  Google Scholar 

  18. Mei X, Jiao Q, Zhu Y, et al. Thermal study of HNIW and mixtures containing aluminum powder. J Therm Anal Calorim. 2014. doi:10.1007/s10973-013-3625-y.

    Google Scholar 

  19. Ordzhonikidze O, Pivkina A, Frolov Yu, Muravyev N, Monogarov K. Comparative study of HMX and CL-20. J Therm Anal Calorim. 2011;105:529–34.

    Article  CAS  Google Scholar 

  20. Jin S, Shu Q, Chen S, et al. Preparation of ε-HNIW by a one-pot method in concentrated nitric acid from tetraacetyldiformylhexaazaisowurzitane. Propellants Explos Pyrotech. 2007;32(6):468–71.

    Article  CAS  Google Scholar 

  21. Prakash V. Influence of aluminium on performance of HTPB-based aluminised PBXs. Def Sci J. 2004;54(4):475–82.

    CAS  Google Scholar 

  22. Kumar AS, Rao VB. Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminum, and HTPB for underwater applications. Propellants Explos Pyrotech. 2010. doi:10.1002/prep.200800048.

    Google Scholar 

  23. Nair UR, Sivabalan R, Gore GM, et al. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20 based formulations. Combus Explos Shock Waves. 2005;41(2):121–32.

    Article  Google Scholar 

  24. Li J, Brill TB. Kinetics of solid polymorphic phase transitions of CL-20. Propellants Explos Pyrotech. 2007;32(4):326–30.

    Article  CAS  Google Scholar 

  25. Turcotte R, Vachon M, Kwok QSM, et al. Thermal study of HNIW. Thermochim Acta. 2005;433:105–15.

    Article  CAS  Google Scholar 

  26. Gumpa JC, Peiris SM. Phase transitions and isothermal equations of state of epsilon hexanitrohexaazaisowurtzitane(CL-20). J Appl Phys. 2008;104:083509.

    Article  Google Scholar 

  27. Tian Q, Yan G, Sun G, et al. Thermally induced damage in hexanitrohexaazaisowurtzitane. Cent Eur J Energ Mater. 2013;10(3):359–69.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Dr. Jie Sun for his enthusiastic help in this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Xu, Jj., Guo, Xy. et al. Effect of addictives on polymorphic transition of ε-CL-20 in castable systems. J Therm Anal Calorim 117, 1001–1008 (2014). https://doi.org/10.1007/s10973-014-3798-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3798-z

Keywords

Navigation