[go: up one dir, main page]

Skip to main content
Log in

X-ray diffraction and thermogravimetry data of cellulose, chlorodeoxycellulose and aminodeoxycellulose

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cellulose was chemically modified with SOCl2 to obtain chlorodeoxycellulose, followed by a reaction that gave bonded ethylene-1,2-diamine (en), producing 6-(2′-aminoethylamino)-6-deoxycellulose. The reactions were carried out without the presence of solvent, in water or in N,N′-dimethylformamide, in which the highest amount of amino compound was incorporated onto the biopolymer backbone. The X-ray diffraction patterns for the chlorodeoxycellulose indicate new crystallinities that result from hydrogen bonds established through bonded chorine atoms and the remaining hydroxyl groups, while all the aminodeoxycelluloses were amorphous compounds. Thermal stabilities, for all aminated celluloses gave lower final mass losses than for the chlorinated biopolymer, whose value is lower than unmodified cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Airoldi C. The weighty potentiality of nitrogenated basic centers in inorganic polymers and biopolymers for cation removal. Quim Nova. 2008;31:144–53.

    CAS  Google Scholar 

  2. da Silva Filho EC, de Melo JCP, Airoldi C. Preparation of ethylenediamine-anchored cellulose and determination of thermochemical data fot the interaction between cations and basic centers at the solid/liquid interface. Carbohydr Res. 2006;341:2842–50.

    Article  CAS  Google Scholar 

  3. de Melo JC, da Silva, Santana SA, Airoldi, C. Maleic anhydride incorporated onto cellulose and thermodynamics of cation-exchange process at the solid/liquid interface. Colloids Surf A. 2009.

  4. Lopes ECN, Sousa KS, Airoldi C. Chitosan-cyanuric chloride intermediary as a source to incorporate molecules—thermodynamic data of copper/biopolymer interactions. Thermochim Acta. 2009;483:21–8.

    Article  CAS  Google Scholar 

  5. Sousa KS, Silva Filho EC, Airoldi C. Ethylenesulfide as a useful agente of incorporation into the biopolymer chitosan in a solvent-free reaction for use in cátion removal. Carbohydr Res. 2009. doi:10.1016/j.carres.2009.05.028.

  6. Arakaki LNH, Alves APM, da Silva Filho EC, Fonseca MG, Oliveira SF, Espínola JGP, Airoldi C. Sequestration of Cu(II), Ni(II), and Co(II) by ethyleneimine immobilized on silica. Thermochim Acta. 2007;453:72–4.

    Article  CAS  Google Scholar 

  7. Sales JAA, Petrucelli GC, Oliveira FJVE, Airoldi C. Some features associated with organosilane groups grafted by the sol-gel process onto synthetic talc-like phyllosilicate. J Colloid Interface Sci. 2006;297:95–103.

    Article  CAS  Google Scholar 

  8. Sales JAA, Airoldi C. Calorimetric investigation of metal ion adsorption on 3-glycidoxypropyltrimethylsiloxane + propane-1,3-diamine immobilized on silica gel. Thermochim Acta. 2005;427:77–83.

    Article  CAS  Google Scholar 

  9. da Fonseca MG, da Silva Filho EC, Machado Júnior RSA, Arakaki LNH, Espínola JGP, Airoldi C. Zinc phyllosilicates contaning amino pendant groups. J Solid State Chem. 2004;177:2316–22.

    Article  CAS  Google Scholar 

  10. da Fonseca MG, Airoldi C. Mercaptopropyl magnesium phylossilicate—thermodynamic data on the interaction with divalent cations in aqueous solution. Thermochim Acta. 2001;359:1–9.

    Article  Google Scholar 

  11. Sales JAA, Petrucelli GC, Oliveira FJVE, Airoldi C. Mesoporous silica originating from a gaseous ammonia epoxide ring opening and the thermodynamic data on some divalent cation adsorptions. J Colloid Interface Sci. 2006;297:426–33.

    Article  Google Scholar 

  12. da Silva OG, da Fonseca MG, Arakaki LNH. Silylated calcium phosphate and their new behavior for copper retention from aqueous solution. Colloids Surf A. 2007;301:376–81.

    Article  Google Scholar 

  13. da Silva OG, da Silva Filho EC, da Fonseca MG, Arakaki LNH, Airoldi C. Hydroxyapatite organofunctionalized with silylating agents to heavy cátion removal. J Colloid Interface Sci. 2006;302:485–91.

    Article  CAS  Google Scholar 

  14. da Fonseca MG, da Silva Filho EC, Machado Júnior RSA, Arakaki LNH, Espínola JGP, Oliveira SF, et al. Anchored fibrous chrysotile silica and its ability in using nitrogen basic centers on cátion complexing from aqueous solution. Colloids Surf A. 2003;227:85–91.

    Article  CAS  Google Scholar 

  15. da Fonseca MG, Almeida RKS, Arakaki LNH, Espínola JGP, Airoldi C. Vermiculite as a useful host for guest cyclic aliphatic amine intercalation, fllowed by cation adsorption. Colloids Surf A. 2006;280:39–44.

    Article  CAS  Google Scholar 

  16. Morais CC, da Silva Filho EC, da Silva OG, da Fonseca MG, Arakaki LNH, Espínola JGP. Thermal characterization of modified phyllossilicates with aromatic heterocyclic amines. J Thermal Anal Calorim. 2007;87:767–70

    Article  Google Scholar 

  17. Klemm D, Heublein D, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–93.

    Article  CAS  Google Scholar 

  18. Jal PK, Patel S, Mishra BK. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta. 2004;62:1005–28.

    Article  CAS  Google Scholar 

  19. Arakaki LNH, da Fonseca MG, da Silva Filho EC, Alves APM, de Sousa KS, Silva ALP. Extraction of Pb(II), Cd(II), and Hg(II) from aqueous solution by nitrogen and functionality grafted to silica gel measured by calorimetry. Thermochim Acta. 2006;450:12–15.

    Article  CAS  Google Scholar 

  20. Tashiro T, Shimura Y. Removal of mercuric ions by systems based on cellulose derivatives. J Appl Polym Sci. 1982;27:747–56.

    Article  CAS  Google Scholar 

  21. Silva CR, Airoldi C, Collins KE, Collins CH. Influence of the TiO2 content on the chromatographic performance and high pH stability of C18 titanized phases. J Chrom A. 2006;1114:45–52.

    Article  CAS  Google Scholar 

  22. Valkenberg HM, Hölderich WF. Preparation and use of hybrid organic-inorganic catalysts. Catal Rev. 2002;44:321–74.

    Article  CAS  Google Scholar 

  23. Prado AGS, Airoldi C. Adsorption, preconcentration and separation of cations on silica gel chemically modified with the herbicide 2,4-dichlorophenoxyacetic acid. Anal Chim Acta. 2001;432:201–11.

    Article  CAS  Google Scholar 

  24. Pehlivan E, Altum T. The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Drowex 50W synthetic resin. J Hazard Mater. 2006;134:149–56.

    Article  CAS  Google Scholar 

  25. Martin AI, Sanchez-Chaves M, Arranz F. Synthesis, characterization and controlled release behaviour of adducts from chloroacetylated cellulose and α-naphthylacetic acid. React Funct Polym. 1999;39:179–87.

    Article  CAS  Google Scholar 

  26. Warner JC, Cannon AS, Dye KM. Green chemsitry. Env Imp Ass Rev. 2004;24:775–99.

    Article  Google Scholar 

  27. Tanaka K, Toda F. Solvent-free organic synthesis. Chem Rev. 2000;100:1025–74.

    Article  CAS  Google Scholar 

  28. Ott E, Spurlin HM, Grafflin MW. Cellulose and cellulose derivatives. New York: Interscience Publishers; 1954.

    Google Scholar 

  29. Zugenmaier P. Conformation and packing of various crystalline celllose fibers. Prog Polym Sci. 2001;26:1341–417.

    Article  CAS  Google Scholar 

  30. O’Sullivan AC. Cellulose: the structure slowly unravels. Cellulose. 1997;4:173–207.

    Article  Google Scholar 

  31. Kim UJ, Kuga S. Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta. 2001;369:79–85.

    Article  CAS  Google Scholar 

  32. Cunha AP, Freire CRS, Silvestre AJD, Pascoal Neto C, Gandini A, Orblin E, et al. Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers. J Colloid Interface Sci. 2007;316:360–6.

    Article  CAS  Google Scholar 

  33. Liu CF, Sun RC, Zhang AP, Ren JL, Geng ZC. Polym Degrad Stab. 2006;91:3040–7.

    Article  CAS  Google Scholar 

  34. Yin C, Li J, Xu Q, Peng Q, Liu Y, Shen X. Chemical modification of cotton cellulose in supercritical carbon dioxide: synthesis and characterization of cellulose carbamate. Carbohydr Polym. 2007;67:147–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to FAPESP (ECSF, JCPM, FJVEO) and CNPq (CA) for fellowships and for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson C. da Silva Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva Filho, E.C., Santana, S.A.A., Melo, J.C.P. et al. X-ray diffraction and thermogravimetry data of cellulose, chlorodeoxycellulose and aminodeoxycellulose. J Therm Anal Calorim 100, 315–321 (2010). https://doi.org/10.1007/s10973-009-0270-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0270-6

Keywords

Navigation