[go: up one dir, main page]

Skip to main content
Log in

Influence of the particle-size reduction by ultrasound treatment on the dehydroxylation process of kaolinites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kaolinites from well-known sources (KGa-1 and KGa-2) were used to study the influence of the particle-size reduction on the dehydroxylation process. Size reduction of particles was obtained by ultrasound treatment to avoid the effect of the progressive amorphization of the structure, which takes place with the traditional grinding treatment.

The particle-size reduction causes an increase of the mass loss between 140 and 390°C attributed to the loss of the hydroxyl groups exposed on the external surface of kaolinite; a shift to lower temperatures of the endothermic effect related with the mass loss between 390 and 600°C and a shift of the end of dehydroxylation to lower temperatures. The first modification can be explained by an increase of the number of hydroxyls exposed on the external surface of kaolinite which is proportional to the new surface generated in the particle reduction process, whereas the shift of the dehydroxylation to lower temperatures is related to the reduction of the dimensions of the particles which favour the diffusion controlled mechanisms.

Comparing between the DTA curves to the TG curves of the studied samples shows that the observed modifications in the thermal properties induced by the particle-size reduction are greater for the low-defect kaolinite. The intensity of these modifications depends on the effectiveness of the ultrasound treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H. H. Murray, Clay Miner., 33 (1999) 65.

    Google Scholar 

  2. H. H. Murray, Appl. Clay Sci., 17 (2000) 207.

    Google Scholar 

  3. B. T. Shaw, J. Phys. Chem., 46 (1942) 1032.

    Google Scholar 

  4. W. D. Laws and J. B. Page, Soil Sci., 62 (1945) 319.

    Google Scholar 

  5. R. D. Dragsdorf, H. E. Kissinger and A. T. Perkins, Soil Sci. Soc. Am., 71 (1951) 439.

    Google Scholar 

  6. T. Haase and K. Winter, Bull. Soc. Fr. Ceram., 44 (1959)13.

    Google Scholar 

  7. J. G. Miller and T. D. Oulton, Clays Clay Miner., 18 (1970) 313.

    Google Scholar 

  8. Z. Juhász, Acta Mineralogica-Petrographica [suppl.], 24 (1980) 121.

    Google Scholar 

  9. J. Kristóf, R. L. Frost, J. T. Kloprogge, E. Horváth and É. Makó, J. Therm. Anal. Cal., 69 (2002) 77.

    Google Scholar 

  10. P. J. Sánchez-Soto, M. C. Jiménez de Haro, L. A. Pé rez-Maqueda, I. Varona and J. L. Pérez-Rodríguez, J. Am. Ceram. Soc., 83 (2000) 1649.

    Google Scholar 

  11. L. A. Pérez-Maqueda, O. B. Caneo, J. P. Poyato and J. L. Pérez-Rodríguez, Phys. Chem. Minerals, 28 (2001) 61.

    Google Scholar 

  12. J. L. Pérez-Rodríguez, F. Carrera, J. P. Poyato and L. A. Pérez-Maqueda, Nanotechnology, 13 (2002) 382.

    Google Scholar 

  13. A. Pérez-Maqueda, F. Franco, M. A. Avilés, J. P. Poyato and J. L. Pérez-Rodríguez, Clays Clay Miner., (in press).

  14. F. Franco, L. A. Pérez-Maqueda and J. L. Pérez-Rodríguez, Thermochim. Acta, 404 (2003) 71.

    Google Scholar 

  15. L. Heller-Kallai and I. Lapides, J. Therm. Anal. Cal., 71 (2003) 689.

    Google Scholar 

  16. F. Franco and M. D. Ruiz Cruz, J. Therm. Anal. Cal., 73 (2003) 151.

    Google Scholar 

  17. H. Van Olphen and J. J. Fripiat, Oxford, Pergamon 1979, p. 346.

  18. S. J. Chipera and D. L. Bish, Clays Clay Miner., 49 (2001) 398.

    Google Scholar 

  19. S. Guggenheim and A. F. K. van Groos, Clays Clay Miner., 49 (2001) 433.

    Google Scholar 

  20. D. N. Hinckley, Clays Clay Miner., 11 (1963) 229.

    Google Scholar 

  21. B. D. Cullity, Diffraction 1: The directions of diffracted beams, In: Elements of X-ray diffraction, Addison-Wesley Publishing Co., Inc., USA 1956, 78.

    Google Scholar 

  22. F. Franco, L. A. Pérez-Maqueda and J. L. Pérez-Rodríguez, J. Colloids Interface Sci., (in press).

  23. K. Okada, N. Otsuka and J. Ossaka, J. Am. Ceram. Soc., 69 (1986) 51.

    Google Scholar 

  24. B. Sonuparlak, M. Sarikaya and I. A. Aksay, J. Am. Ceram. Soc., 70 (1987) 837.

    Google Scholar 

  25. P. Dion, J. F. Alcover, F. Bergaya, A. Ortega, P. L. Llewellyn and F. Rouquerol, Clay Miner., 33 (1998) 269.

    Google Scholar 

  26. R. L. Frost and A. M. Vassallo, Clays Clay Miner., 44 (1996) 635.

    Google Scholar 

  27. O. Castelein, B. Soulestin, J. P. Bonnet and P. Blanchart, Ceram. Int., 27 (2001) 517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Franco.

Additional information

The authors are grateful to S. Yariv, I. Lapides and S. Shoval for carefully reviewing this paper and making helpful comments. This research has been supported by Research Project MAT 2002-03774 from the Spanish Ministry of Science and Technology and Research Groups FQM-187 and RNM-0199 of the Junta de Andalucia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, F., Pérez-Maqueda, L.A. & Pérez-Rodríguez, J.L. Influence of the particle-size reduction by ultrasound treatment on the dehydroxylation process of kaolinites. J Therm Anal Calorim 78, 1043–1055 (2004). https://doi.org/10.1007/s10973-005-0469-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-0469-0

Keywords

Navigation