[go: up one dir, main page]

Skip to main content
Log in

Engineering CNOT gate in cavity QED scenario

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present a quantum CNOT logic gate based on interaction of a three-level cesium atom with a two-mode electromagnetic field in a high-Q superconducting cavity. The three-level atom acts as a control qubit and the two-mode electromagnetic field serves as a target qubit. Presently available QED experiments make it feasible to realize the theoretical suggestion in the laboratory. We determine the feasibility of our proposal by calculating the fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gonţa, S. Fritzsche, and T. Radtke, Phys. Rev. A, 77, 062312 (2008).

    Google Scholar 

  2. R. Ul-Islam, A. H. Khosa, H.-W. Lee, and F. Saif, Eur. Phys. J. D, 48, 271 (2008).

    Article  ADS  Google Scholar 

  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, London (2000).

    MATH  Google Scholar 

  4. Dirk Bouwmeester, Artur Ekert, and Anton Zeilinger, The Physics of Quantum Information, Springer, Berlin (2001).

    Google Scholar 

  5. G. Leuchs and T. Beth, Quantum Information Processing, Wiley, Weinheim (2003).

    MATH  Google Scholar 

  6. I. L. Chuang, L. M. K. Vandersypen, X. Zhou, et al., Nature, 393, 143 (1998).

    Article  ADS  Google Scholar 

  7. I. L. Chuang, N. Gerschenfeld, and M. Kubinec, Phys. Rev. Lett., 75, 4714 (1995).

    Article  MathSciNet  Google Scholar 

  8. J. I. Cirac and P. Zoller, Phys. Rev. Lett., 74, 4091 (1995).

    Article  ADS  Google Scholar 

  9. C. Monroe, D. M. Meekhof, B. E. King, et al., Phys. Rev. Lett., 75, 4714 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. J. I. Cirac and P. Zoller, Nature (London), 404, 579 (2000).

    Article  ADS  Google Scholar 

  11. D. Loss and D. P. Di Vincenzo, Phys. Rev. A, 57, 120 (1998).

    Article  ADS  Google Scholar 

  12. D. P. Di Vincenzo, Sci., 270, 255 (1995).

    Article  ADS  Google Scholar 

  13. A. Ekert and R. Josza, Rev. Mod. Phys., 68, 733 (1996).

    Article  ADS  Google Scholar 

  14. J. Preskill, Phys. Today, 52, 24 (1999).

    Article  Google Scholar 

  15. A. Khalique and F. Saif, Phys. Lett. A, 314, 37 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. R. Islam, M. Ikram, and F. Saif, J. Phys. B: At. Mol. Opt. Phys., 40, 1359 (2007).

    Article  ADS  Google Scholar 

  17. D. G. Angelakis, M. F. Santos, V. Yannopapas, and A. Ekert, Phys. Lett. A, 362, 377 (2007).

    Article  ADS  Google Scholar 

  18. S. M. Clark, K. M. C. Fu, T. D. Ladd, and Y. Yamamoto, Phys. Lett., 99, 040501 (2007).

    Google Scholar 

  19. D. Deutsch and R. Jozsa, Proc. R. Soc. (London), Ser. A, 439, 553 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. A. K. Ekert, Phys. Rev. Lett., 67, 661 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. A. K. Ekert, J. G. Rarity, P. R. Tapster, and G.M. Palma, Phys. Rev. Lett., 69, 1293 (1992).

    Article  ADS  Google Scholar 

  22. F. Saif, Talk at the International Conference on Physics in Industry (Karachi, Pakistan, 2001).

  23. L. K. Grover, Phys. Rev. Lett., 79, 325 (1997).

    Article  ADS  Google Scholar 

  24. L. K. Grover, Phys. Rev. Lett., 79, 4709 (1997).

    Article  ADS  Google Scholar 

  25. T. Sleator and H. Weinfurter, Phys. Rev. Lett. 74, 4087 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. F. Saif, R. U. Islam, and M. Javed, J. Russ. Laser. Res., 28, 529 (2007).

    Article  Google Scholar 

  27. C. P. Yang, S. I. Chu, and S. Han, Phys. Rev. A, 70, 044303 (2004).

  28. M. Ikram and F. Saif, Phys. Rev. A, 66, 014304 (2002).

  29. J. Wang, Y. Wang, S. Yan, et al., Appl. Phys. B, 78, 217 (2004).

    Article  ADS  Google Scholar 

  30. G. Vemuri, G. S. Agarwal, and B. D. Nageswara, Phys. Rev. A, 53, 2842 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Akram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akram, J., Saif, F. Engineering CNOT gate in cavity QED scenario. J Russ Laser Res 29, 538–543 (2008). https://doi.org/10.1007/s10946-008-9045-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-008-9045-y

Keywords

Navigation