[go: up one dir, main page]

Skip to main content
Log in

Physicochemical Characterization and In Vitro Digestibility Study of an In Silico Designed Recombinant Protein Enriched with Large Neutral Amino Acids and Lacking Phenylalanine for Phenylketonuria

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

In our previous study, a 3D structure of LNAA66 model protein containing 4–5 α-helices, high large neutral amino acids (LNAA) and lacking phenylalanine was designed, refined, expressed in Pichia pastoris and confirmed by Western blotting. Here the study is focused on the characterization of the expressed and purified recombinant LNAA66 protein. The results revealed that the expressed protein had 68.59% of LNAA enrichment, containing 41.6% of α-helix, 50.4% turns and 8% β-sheet, which are as per the in silico designed protein. The LC–ESI–MS/MS results confirmed the recombinant protein by identifying the first 30 N-terminal amino acids with a sequence coverage of ~ 29%. The protein was digested entirely into smaller molecular weight fragments when treated with digestive enzymes mimicking the human GI tract digestion, which indicated complete digestibility of the protein. These results suggest that the protein can be utilized for the envisioned application of dietary treatment for phenylketonuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3D:

3-Dimensional

LNAA:

Large neutral amino acids

PKU:

Phenylketonuria

PAH:

Phenylalanine hydroxylase

CD:

Circular dichroism

Trp:

Tryptophan

Tyr:

Tyrosine

Thr:

Threonine

Leu:

Leucine

Ile:

Isoleucine

Val:

Valine

Met:

Methionine

His:

Histidine

Phe:

Phenylalanine

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

HR-LCMS:

High resolution liquid chromatography mass spectrometry

PITC:

Phenylisothiocyanate

SGF:

Simulated gastric fluid

SIF:

Simulated intestinal fluid

TOF:

Time-of-flight

RT:

Room temperature

References

  1. Gizewska M, MacDonald A, Belanger-Quintana A, Burlina A, Cleary M, Coskun T, Feillet F, Muntau AC, Trefz FK, van Spronsen FJ, Blau N (2016) Diagnostic and management practices for phenylketonuria in 19 countries of the South and Eastern European Region: survey results. Eur J Pediatr 175(2):261–272

    Article  PubMed  Google Scholar 

  2. Rama Devi AR, Naushad SM (2004) Newborn screening in India. Ind J Pediatr 71:157–160

    Article  Google Scholar 

  3. Soltanizadeh N, Mirmoghtadaie L (2014) Strategies used in production of phenylalanine-free foods for PKU management. Compr Rev Food Sci Food Saf 13:287–299

    Article  CAS  PubMed  Google Scholar 

  4. van Vliet D, Bruinenberg VM, Mazzola PN, van Faassen MHJR, de Blaauw P, Kema IP, Fokkema MRH, van Anholt RD, van der Zee EA, van Spronsen FJ (2015) Large neutral amino acid supplementation exerts its effect through three synergistic mechanisms: proof of principle in phenylketonuria mice. PLoS ONE 10(12):1–18. https://doi.org/10.1371/journal.pone.0143833

    Article  CAS  Google Scholar 

  5. van Vliet D, Bruinenberg VM, Mazzola PN, van Faassen MHJR, de Blaauw P, Kema IP, Fokkema MRH, van Anholt RD, van der Zee EA, van Spronsen FJ (2018) Large neutral amino acids supplementation as an alternative to the phenylalanine-restricted diet in adults with phenylketonuria: evidence from adult Pah-enu2 mice. J Nutr Biochem 53:20–27

    Article  PubMed  Google Scholar 

  6. van Vliet D, van der Groot E, van Ginkle WG, van Faassen MHJR, de Blaauw P, Kema IP, Martinez A, Fokkema MRH, van der Zee EA, van Spronsen FJ (2019) The benefit of large neutral amino acid supplementation to a liberalized phenylalanine-restricted diet in adult phenylketonuria patients: evidence from adult Pah-enu2 mice. Nutrients 11(9):2252. https://doi.org/10.3390/nu11092252

    Article  CAS  PubMed Central  Google Scholar 

  7. Cleary MA, Phenylketonuria SR (2019) Symposium: inborn errors of metabolism. Paediatr Child Health 29(3):111–115

    Article  Google Scholar 

  8. Belanger AM, Przybylska M, Gefteas E, Furgerson M, Geller S, Kloss A, Cheng SH, Zhu Y, Yew NS (2018) Inhibiting neutral amino acid transport for the treatment of phenylketonuria. JCI Insight. https://doi.org/10.1172/jci.insight.121762

    Article  PubMed  PubMed Central  Google Scholar 

  9. MacDonald A, Singh RH, Rocha JC, van Spronsen FJ (2019) Optimising amino acid absorption: essential to improve nitrogen balance and metabolic control in phenylketonuria. Nutr Res Rev 32(1):70–78

    Article  CAS  PubMed  Google Scholar 

  10. Taslimifar M, Buoso S, Verrey F, Kurtcuoglu V (2019) Propagation of plasma l-phenylalanine concentration fluctuations to the neurovascular unit in phenylketonuria: an in silico study. Front Physiol 10:360. https://doi.org/10.3389/fphys.2019.00360

    Article  PubMed  PubMed Central  Google Scholar 

  11. Appaiah P, Vasu P (2020) Improvement, cloning, and expression of an in silico designed protein enriched with large neutral amino acids in Pichia pastoris for possible application in phenylketonuria. J Food Biochem. https://doi.org/10.1111/jfbc.13151

    Article  PubMed  Google Scholar 

  12. Li O, Kampe O (2019) Recombinant Phe-free proteins for use in the treatment of PKU. US Patent 10,174,354 B2

  13. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kelly SM, Price NC (1997) The application of circular dichroism to studies of protein folding and unfolding. Biochem Biophys Acta 1338:161–185

    CAS  PubMed  Google Scholar 

  15. Bossard G, Bartoli M, Fardeau ML, Holzmuller P, Ollivier B, Geiger A (2017) Characterization of recombinant Trypanosoma bruceigambiense translationally controlled tumor protein (rTbgTCTP) and its interaction with Glossina midgut bacteria. Gut Microbes 8(5):413–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamiloglu S, Ozkan G, Isik H, Horoz O, Camp JV, Capanoglu E (2017) Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: an in vitro digestion study with a standardized static model. LWT Food Sci Technol 77:475–481

    Article  CAS  Google Scholar 

  17. Su DX, Liu HS, Zeng QZ, Qi XY, Yao XS, Zhang J (2017) Changes in the phenolic contents and antioxidant activities of citrus peels from different cultivars after in vitro digestion. Int J Food Sci Technol 52:2471–2478

    Article  CAS  Google Scholar 

  18. Su D, Li N, Yuan Y, He S, Wang Y, Wu Q, Li L, Yang H, Zeng Q (2018) Effects of in vitro digestion on the composition of flavonoids and antioxidant activities of the lotus leaf at different growth stages. Int J Food Sci Technol 53:1631–1639

    Article  CAS  Google Scholar 

  19. Sunil L, Appaiah P, Martin A, Vasu P (2021) Characterization of in silico modeled synthetic protein enriched with branched-chain amino acids expressed in Pichia pastoris. Int J Biol Macromol 168:518–525

    Article  CAS  PubMed  Google Scholar 

  20. Moore S, Stein WH (1963) Chromatographic determination of amino acids by the use of automatic recording equipment. Method Enzymol 6:819–831

    Article  CAS  Google Scholar 

  21. Bidlingmeyer BA, Cohen SA, Tarvin TL, Frost B (1987) A new, rapid, high-sensitivity analysis of amino acids in food type samples. J Ass Off Anal Chem 70(2):241–247

    CAS  Google Scholar 

  22. Yang JT, Wu CCS, Martinez HM (1986) Calculation of protein conformation from circular dichroism. Method Enzymol 130:208–269

    Article  CAS  Google Scholar 

  23. Fu TJ, Abbott UR, Hatzos C (2002) Digestibility of food allergens and non-allergenic proteins in simulated gastric and simulated intestinal fluid-a comparative study. J Agric Food Chem 50(24):7154–7160

    Article  CAS  PubMed  Google Scholar 

  24. Kamani MH, Martin A, Meera MS (2020) Valorization of by-products derived from milled moth bean: evaluation of chemical composition, nutritional profile and functional characteristics. Waste Biomass Valor 11:4895–4906

    Article  CAS  Google Scholar 

  25. Kazir M, Abuhassira Y, Robin A, Nahor O, Luo J, Israel A, Golberg A, Livney YD (2019) Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocoll 87:194–203

    Article  CAS  Google Scholar 

  26. Litwinek D, Gambus H, Mickwoska B, Ziec G, Berski W (2020) Amino acid composition of proteins in wheat and oat flours used in breads production. J Microbiol Biotechnol Food Sci 2(1):1725–1733

    Google Scholar 

  27. Rahim F, Malehi AS, Mohammadshahi M, Tirdad R (2017) Combined large neutral amino acid supplementation for phenylketonuria (PKU). Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD012618

    Article  PubMed Central  Google Scholar 

  28. Scala I, Riccio MP, Marino M, Bravaccio C, Parenti G, Strisciuglio P (2020) Large neutral amino acids (LNAAs) supplementation improves neuropsychological performances in adult patients with phenylketonuria. Nutrients 12:1092. https://doi.org/10.3390/nu12041092

    Article  CAS  PubMed Central  Google Scholar 

  29. Saxena VP, Wetlaufer DB (1971) A new basis for interpreting the circular dichroic spectra of proteins. Proc Natl Acad Sci USA 68:969–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnson WC (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 35:307–312

    Article  CAS  PubMed  Google Scholar 

  31. Brandwijk RJMGE, Nesmelova I, Dings RPM, Mayo KH, Thijssen VLJL, Griffioen AW (2005) Cloning an artificial gene encoding angiostatic anginex: from designed peptide to functional recombinant protein. Biochem Biophys Res Commun 333:1261–1268

    Article  CAS  PubMed  Google Scholar 

  32. Greenfield NJ, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8(10):4108–4116

    Article  CAS  PubMed  Google Scholar 

  33. Du Y, Jiang Y, Zhu X, Xiong H, Shi S, Hu J, Peng H, Zhou Q, Sun W (2012) Physicochemical and functional properties of the protein isolate and major fractions prepared from Akebia trifoliata var. australis seed. Food Chem 133:923–929

    Article  CAS  Google Scholar 

  34. Gholami S, Gheibi N, Falak R, Chegini KG (2018) Cloning, expression, purification and CD analysis of recombinant human betatrophin. Rep Biochem Mol Biol 6(2):158–163

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Barnett GV, Balakrishnan G, Chennamsetty N, Meengs B, Meyer J, Bongers J, Ludwig R, Tao L, Das TK, Leone A, Kar SR (2018) Enhanced precision of circular dichroism spectral measurements permits detection of subtle higher order structural changes in therapeutic proteins. J Pharmaceutical Sci 107(10):2559–2569

    Article  CAS  Google Scholar 

  36. Gaikwad AS, Loh KL, O’Connor AE, Reid HH, O’Bryan MK (2020) Expression and purification of recombinant mouse CRISP4 using a baculovirus system. Protein Exp Purif 167:05543

    Article  Google Scholar 

  37. Klingl S, Kordes S, Schmid B, Gerlach RG, Hensel M, Muller YA (2020) Recombinant protein production and purification of SiiD, SiiE and SiiF—components of the SPI4-encoded type I secretion system from Salmonella typhimurium. Protein Exp Purif 172:105632. https://doi.org/10.1101/2020.01.25.919720

    Article  CAS  Google Scholar 

  38. Canas B, Lopez-Ferrer D, Ramos-Fernandez A, Camafeita E, Calvo E (2006) Mass spectrometry technologies for proteomics. Brief Funct Genom Proteom 4(4):295–320

    Article  CAS  Google Scholar 

  39. Chen GD, Pramanik BN, Liu YH, Mirza UA (2007) Applications of LC/MS in structure identifications of small molecules and proteins in drug discovery. J Mass Spectrom 42:279–287

    Article  CAS  PubMed  Google Scholar 

  40. Choi M, Eren-Dogu ZF, Colangelo C, Cottrell J, Hoopmann MR, Kapp EA, Kim S, Lam H, Neubert TA, Palmblad M, Phinney BS, Weintraub ST, MacLean B, Vitek O (2017) ABRF Proteome Informatics Research Group (iPRG) 2015 study: detection of differentially abundant proteins in label-free quantitative LC–MS/MS experiments. J Proteome Res 16:945–957

    Article  CAS  PubMed  Google Scholar 

  41. Malamud M, Carasi P, Bronsoms S, Trejo SA, Serradell MA (2016) Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-016-0820-4

    Article  PubMed  Google Scholar 

  42. Chen Q, Pan XD, Huang BF (2017) Authentication of shrimp muscle in complex foodstuff by in-solution digestion and high-resolution mass spectrometry. R Soc Chem Adv 7:32903–32908. https://doi.org/10.1039/c7ra04967f

    Article  CAS  Google Scholar 

  43. Liang LH, Liu CC, Chen B, Yan L, Yu HL, Yang Y, Wu JN, Li XS, Liu SL (2019) LC–HRMS screening and identification of novel peptide markers of ricin based on multiple protease digestion strategies. Toxins 11(7):393. https://doi.org/10.3390/toxins11070393

    Article  CAS  PubMed Central  Google Scholar 

  44. Rehman SU, Rizwan M, Khan S, Mehmood A, Munir A (2020) Proteomic analysis of medicinal plant Calotropis gigantea by in silico peptide mass fingerprinting. Curr Comput Aided Drug Des. https://doi.org/10.2174/1573409916666200219114531

    Article  Google Scholar 

  45. Mohammadzadeh S, Moradian F, Yeganeh S, Falahatkar B, Milla S (2020) Design, production and purification of a novel recombinant gonadotropin-releasing hormone associated peptide as a spawning inducing agent for fish. Protein Exp Purif 166:105510

    Article  CAS  Google Scholar 

  46. Sereena MC, Sebastian D (2019) Cloning, expression and characterization of the anticancer protein azurin from an indigenous strain Pseudomonas aeruginosa SSj. Int J Peptide Res Therap. https://doi.org/10.1007/s10989-019-09924-1

    Article  Google Scholar 

  47. Yang RS, Tang W, Sheng H, Meng F (2018) Rapid characterization of insulin modifications and sequence variations by proteinase K digestion and UHPLC-ESI-MS. J Am Soc Mass Spectr 29:853–858. https://doi.org/10.1007/s13361-017-1887-5

    Article  CAS  Google Scholar 

  48. Hung CY, Cheng LH, Yeh CM (2019) Functional expression of recombinant sweet-tasting protein brazzein by Escherichia coli and Bacillus licheniformis. Food Biotechnol 33(3):251–271

    Article  CAS  Google Scholar 

  49. Sarikurkcu C, Ozer MS, Tlili M (2020) Comparison of the influence of the solvent on the extraction of the bioactive compounds from Marrubium lutescens using liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS). Anal Lett. https://doi.org/10.1080/00032719.2020.1734016

    Article  Google Scholar 

  50. Butts CA, Monro JA, Moughan PJ (2012) In vitro determination of dietary protein and amino acid digestibility for humans. Brit J Nutr 108:S282–S287

    Article  CAS  PubMed  Google Scholar 

  51. Akimov M, Bezuglov V (2012) Methods of protein digestive stability assay-state of the art. In: Brzozowski T (ed) New advances in the basic and clinical gastroenterology. InTech, London

    Google Scholar 

  52. Zhao XX, Hu XL, Tang T, Lu CL, Fu Xia L, Li Lian JI, Qiao Quan L (2013) Digestive stability and acute toxicity studies of exogenous protein in transgenic rice expressing lysine-rich fusion proteins. Agric Sci 58(20):2460–2468

    CAS  Google Scholar 

  53. Herman RA, Korjagin VA, Schafer BW (2005) Quantitative measurement of protein digestion in simulated gastric fluid. Regul Toxicol Pharmacol 41:175–184

    Article  CAS  PubMed  Google Scholar 

  54. Astwood J, Leach J, Fuchs R (1996) Stability of food allergens to digestion in vitro. Nature Biotechnol 14:1269–1273

    Article  CAS  Google Scholar 

  55. FAO/WHO (2001) Report of a joint FAO/WHO Expert Committee on Allergenicity of Foods Derived from Biotechnology. Rome, Italy. FAO/WHO 22–25 Jan 2001

  56. Silva SV, Malcata FX (2005) Casein as source of bioactive peptides. Int Dairy J 15:1–15

    Article  CAS  Google Scholar 

  57. Pihlanto-Leppala A (2000) Bioactive peptides derived from whey proteins: opioid and ace-inhibitory peptides. Trend Food Sci Technol 11(9–10):347–356

    Article  CAS  Google Scholar 

  58. Daly A, Evans S, Chahal S, Santra S, Pinto A, Jackson R, Gingell C, Rocha J, Van Spronsen FJ, MacDonald A (2019) Glycomacropeptide: long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU. Orphanet J Rare Dis 14(44):1–12

    Google Scholar 

  59. Douglas TD, Nucci AM, Berry AM, Henes ST, Singh RH (2019) Large neutral amino acid status in association with P:T ratio and diet in adult and pediatric patients with phenylketonuria. J Inherit Metab Dis Rep 50:50–59

    Google Scholar 

  60. Burlina AP, Cazzorla C, Massa P, Loro C, Gueraldi D, Burlina AB (2020) The impact of a slow-release large neutral amino acids supplement on treatment adherence in adult patients with phenylketonuria. Nutrients 12:2078. https://doi.org/10.3390/nu12072078

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Sridevi Annapurna Singh, Director, CSIR-CFTRI, Mysuru, India, for providing infrastructural facilities and Institute funding (MLP0191), and the Indian Council of Medical Research (ICMR), Delhi, India, for providing the SRF fellowship to PA and SL. We also thank Dr. Sridevi Annapurna Singh, Director, CSIR-CFTRI, Mysuru, India, and Shri Govindaraju K for their kind support in carrying out the CD spectroscopy and the amino acid analysis, respectively.

Funding

The work has been funded by institute funding (MLP0191) to PV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Vasu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appaiah, P., Sunil, L., Martin, A. et al. Physicochemical Characterization and In Vitro Digestibility Study of an In Silico Designed Recombinant Protein Enriched with Large Neutral Amino Acids and Lacking Phenylalanine for Phenylketonuria. Protein J 41, 79–87 (2022). https://doi.org/10.1007/s10930-021-10039-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-10039-0

Keywords

Navigation