[go: up one dir, main page]

Skip to main content
Log in

Novel Method for Producing Oleophilic Polyurethane Foam to Remove Oil from Open Water

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, a novel recyclable, hydrophobicity foam with excellent oil/water separation based on polyurethane (PU) and polypropylene glycol (PPG) grafted stearic acid (PGGA) has been developed. PGGA was simply synthesized by the esterification of stearic acid and PPG, while the PU/PGGA foam was fabricated by the reaction of PPG and methyl diphenyl diisocynate (MDI) with the addition of PGGA. The PU/PGGA foam exhibits improved oil adsorption capacity, water rejection as well as oil/water selectivity with the increase of PGGA weight loadings. The presence of PGGA at high loading (≥ 5 wt%) reduces the pore size and porosity of PU/PGGA foam due to the high viscosity of PGGA preventing the foam formation reaction. As a result, the oil adsorption capacity of PU/PGGA foam is slightly neglected, nevertheless, the oil/water selectivity is significantly enhanced compared to the original PU foam. The result in this work suggests a simple and cost-effective method with potential in oil removal at large scale application.

Graphical Abstract

In this study, novel hydrophobicity agent (PGGA) is developed for enhancing the oil/water separation of polyurethane (PU) foam. At lower weight loading of PGGA (≤ 3 wt%), the PU/PGGA foam exhibits improvement in oil adsorption capacity, water rejection and oil/water separation. Above 5 wt% loading of PGGA, the oil adsorption of PU/PGGA foam is decreased, however, the oil/water selectivity were drastically improved. With this result, the PU/PGGA foam is highly potential for oil removal at large scale application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liu Y, Wang X, Feng S (2019) Nonflammable and magnetic sponge decorated with polydimethylsiloxane brush for multitasking and highly efficient oil-water separation. Adv Funct Mater 29:1902488

    Article  Google Scholar 

  2. Kang L, Wang B, Zeng J, Cheng Z, Li J, Xu J, Gao W, Chen K (2020) Degradable dual superlyophobic lignocellulosic fibers for high-efficiency oil/water separation. Green Chem 22:504–512

    Article  CAS  Google Scholar 

  3. Yang Y, Liu Z, Huang J, Wang C (2015) Multifunctional, robust sponges by a simple adsorption–combustion method. J Mater Chem A 3:5875–5881

    Article  Google Scholar 

  4. Li J, Kang R, Tang X, She H, Yang Y, Zha F (2016) Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation. Nanoscale 8:7638–7645

    Article  CAS  PubMed  Google Scholar 

  5. Zheng Y-Y, Zhao C-C (1993) A study of kinetics on induced-air flotation for oil-water separation. Sep Sci Technol 28:1233–1240

    Article  Google Scholar 

  6. Li X, Xu H, Liu J, Zhang J, Li J, Gui Z (2016) Cyclonic state micro-bubble flotation column in oil-in-water emulsion separation. Sep Purif Technol 165:101–106

    Article  CAS  Google Scholar 

  7. Hou J, Zhao G, Zhang L, Wang G, Li B (2019) High-expansion polypropylene foam prepared in non-crystalline state and oil adsorption performance of open-cell foam. J Colloid Interface Sci 542:233–242

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Yang S, Wang J, Wang C, Chen L (2011) Fabrication of superhydrophobic TPU film for oil–water separation based on electrospinning route. Mater Lett 65:869–872

    Article  CAS  Google Scholar 

  9. Rezabeigi E, Wood-Adams PM, Drew RAL (2014) Production of porous polylactic acid monoliths via nonsolvent induced phase separation. Polymer 55:6743–6753

    Article  CAS  Google Scholar 

  10. Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83

    Article  CAS  Google Scholar 

  11. Zhang X, Wang X, Liu X, Lv C, Wang Y, Zheng G, Liu H, Liu C, Guo Z, Shen C (2018) Porous polyethylene bundles with enhanced hydrophobicity and pumping oil-recovery ability via skin-peeling. ACS Sustain Chem Eng 6:12580–12585

    Article  CAS  Google Scholar 

  12. Chang L, Zhang X, Ding Y, Liu H, Liu M, Jiang L (2018) Ionogel/copper grid composites for high-performance, ultra-stable flexible transparent electrodes. ACS Appl Mater Interfaces 10:29010–29018

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Liu H, Jiang L (2019) Wettability and applications of nanochannels. Adv Mater 31:1804508

    Article  Google Scholar 

  14. Wang Y, Liu X, Lian M, Zheng G, Dai K, Guo Z, Liu C, Shen C (2017) Continuous fabrication of polymer microfiber bundles with interconnected microchannels for oil/water separation. Appl Mater Today 9:77–81

    Article  Google Scholar 

  15. Ma X, Shen B, Zhang L, Liu Y, Zhai W, Zheng W (2018) Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Compos Sci Technol 158:86–93

    Article  CAS  Google Scholar 

  16. Zhang X, Pan Y, Gao Q, Zhao J, Wang Y, Liu C, Shen C, Liu X (2019) Facile fabrication of durable superhydrophobic mesh via candle soot for oil-water separation. Prog Org Coatings 136:105253

    Article  CAS  Google Scholar 

  17. Nguyen-Tri P, Altiparmak F, Nguyen N, Tuduri L, Ouellet-Plamondon CM, Prud’homme RE (2019) Robust superhydrophobic cotton fibers prepared by simple dip-coating approach using chemical and plasma-etching pretreatments. ACS Omega 4:7829–7837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang C, Liu W, Yang M, Liu C, He S, Xie Y, Wang Z (2018) Facile fabrication of robust fluorine-free self-cleaning cotton textiles with superhydrophobicity, photocatalytic activity, and UV durability. Colloids Surfaces A Physicochem Eng Asp 559:235–242

    Article  CAS  Google Scholar 

  19. Liu Y, Zhang K, Yao W, Liu J, Han Z, Ren L (2016) Bioinspired structured superhydrophobic and superoleophilic stainless steel mesh for efficient oil-water separation. Colloids Surfaces A Physicochem Eng Asp 500:54–63

    Article  CAS  Google Scholar 

  20. Lakshmi DS, Figoli A, Buonomenna MG, Golemme G, Drioli E (2012) Preparation and characterization of porous and nonporous polymeric microspheres by the phase inversion process. Adv Polym Technol 31:231–241

    Article  CAS  Google Scholar 

  21. Sun S, Zhu L, Liu X, Wu L, Dai K, Liu C, Shen C, Guo X, Zheng G, Guo Z (2018) Superhydrophobic shish-kebab membrane with self-cleaning and oil/water separation properties. ACS Sustain Chem Eng 6:9866–9875

    Article  CAS  Google Scholar 

  22. Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425

    Article  CAS  Google Scholar 

  23. Zhang J, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704

    Article  CAS  Google Scholar 

  24. Anjum AS, Ali M, Sun KC, Riaz R, Jeong SH (2020) Self-assembled nanomanipulation of silica nanoparticles enable mechanochemically robust super hydrophobic and oleophilic textile. J Colloid Interface Sci 563:62–73

    Article  CAS  PubMed  Google Scholar 

  25. Song H-M, Chen C, Shui X-X, Yang H, Zhu L-J, Zeng Z-X, Xue Q-J (2019) Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation. J Memb Sci 573:126–134

    Article  CAS  Google Scholar 

  26. Li Y, Yu Q, Yin X, Xu J, Cai Y, Han L, Huang H, Zhou Y, Tan Y, Wang L, Wang H (2018) Fabrication of superhydrophobic and superoleophilic polybenzoxazine-based cotton fabric for oil–water separation. Cellulose 25:6691–6704

    Article  CAS  Google Scholar 

  27. Li Z, Wang B, Qin X, Wang Y, Liu C, Shao Q, Wang N, Zhang J, Wang Z, Shen C, Guo Z (2018) Superhydrophobic/superoleophilic polycarbonate/carbon nanotubes porous monolith for selective oil adsorption from water. ACS Sustain Chem Eng 6:13747–13755

    Article  CAS  Google Scholar 

  28. Dunderdale GJ, Urata C, Sato T, England MW, Hozumi A (2015) Continuous, high-speed, and efficient oil/water separation using meshes with antagonistic wetting properties. ACS Appl Mater Interfaces 7:18915–18919

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Pan Y, Liu X, Liu H, Li N, Liu C, Schubert DW, Shen C (2019) Facile fabrication of superhydrophobic and eco-friendly poly(lactic acid) foam for oil-water separation via skin peeling. ACS Appl Mater Interfaces 11:14362–14367

    Article  CAS  PubMed  Google Scholar 

  30. Cheng Q-Y, An X-P, Li Y-D, Huang C-L, Zeng J-B (2017) sustainable and biodegradable superhydrophobic coating from epoxidized soybean oil and ZnO nanoparticles on cellulosic substrates for efficient oil/water separation. ACS Sustain Chem Eng 5:11440–11450

    Article  CAS  Google Scholar 

  31. Annunciado TR, Sydenstricker THD, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50:1340–1346

    Article  CAS  PubMed  Google Scholar 

  32. Ge J, Shi L-A, Wang Y-C, Zhao H-Y, Yao H-B, Zhu Y-B, Zhang Y, Zhu H-W, Wu H-A, Yu S-H (2017) Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat Nanotechnol 12:434–440

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Pan Y, Bhushan B, Zhao X (2019) Mechanochemical robust, magnetic-driven, superhydrophobic 3D porous materials for contaminated oil recovery. J Colloid Interface Sci 538:25–33

    Article  CAS  PubMed  Google Scholar 

  34. Ji Z, Xie G, Xu W, Wu S, Zhang L, Luo J (2019) Self-cleaning of interfacial oil between polymer composites with porous zeolite microparticles and their self-lubrication properties. Adv Mater Interfaces 6:1801889

    Article  Google Scholar 

  35. Islam MS, McPhedran KN, Messele SA, Liu Y, Gamal El-Din M (2018) Isotherm and kinetic studies on adsorption of oil sands process-affected water organic compounds using granular activated carbon. Chemosphere 202:716–725

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L (2012) Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl Mater Interfaces 4:3207–3212

    Article  CAS  PubMed  Google Scholar 

  37. Wu J, An AK, Guo J, Lee E-J, Farid MU, Jeong S (2017) CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability. Chem Eng J 314:526–536

    Article  CAS  Google Scholar 

  38. Barrejón M, Syrgiannis Z, Burian M, Bosi S, Montini T, Fornasiero P, Amenitsch H, Prato M (2019) Cross-linked carbon nanotube adsorbents for water treatment: tuning the sorption capacity through chemical functionalization. ACS Appl Mater Interfaces 11:12920–12930

    Article  PubMed  Google Scholar 

  39. Yousefi N, Lu X, Elimelech M, Tufenkji N (2019) Environmental performance of graphene-based 3D macrostructures. Nat Nanotechnol 14:107–119

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Xu C, Zhang Y, Wang R, Zha F, She H (2016) Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation. J Mater Chem A 4:15546–15553

    Article  CAS  Google Scholar 

  41. Song X, Lin L, Rong M, Wang Y, Xie Z, Chen X (2014) Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel. Carbon N Y 80:174–182

    Article  CAS  Google Scholar 

  42. Su C, Yang H, Zhao H, Liu Y, Chen R (2017) Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water. Chem Eng J 330:423–432

    Article  CAS  Google Scholar 

  43. Guselnikova O, Barras A, Addad A, Sviridova E, Szunerits S, Postnikov P, Boukherroub R (2020) Magnetic polyurethane sponge for efficient oil adsorption and separation of oil from oil-in-water emulsions. Sep Purif Technol 240:116627

    Article  CAS  Google Scholar 

  44. Cao N, Yang B, Barras A, Szunerits S, Boukherroub R (2017) Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation. Chem Eng J 307:319–325

    Article  CAS  Google Scholar 

  45. Xu L, Xiao G, Chen C, Li R, Mai Y, Sun G, Yan D (2015) Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. J Mater Chem A 3:7498–7504

    Article  CAS  Google Scholar 

  46. Xia C, Li Y, Fei T, Gong W (2018) Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation. Chem Eng J 345:648–658

    Article  CAS  Google Scholar 

  47. Ge X, Qin W, Zhang H, Wang G, Zhang Y, Yu C (2019) A three-dimensional porous Co@C/carbon foam hybrid monolith for exceptional oil–water separation. Nanoscale 11:12161–12168

    Article  CAS  PubMed  Google Scholar 

  48. Park S-H, Kim H-K, Yoon S-B, Lee C-W, Ahn D, Lee S-I, Roh KC, Kim K-B (2015) Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem Mater 27:457–465

    Article  CAS  Google Scholar 

  49. Gu J, Fan H, Li C, Caro J, Meng H (2019) Robust superhydrophobic/superoleophilic wrinkled microspherical MOF@rGO composites for efficient oil-water separation. Angew Chemie Int Ed 58:5297–5301

    Article  CAS  Google Scholar 

  50. Santos OSH, Coelho da Silva M, Silva VR, Mussel WN, Yoshida MI (2017) Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J Hazard Mater 324:406–413

    Article  CAS  PubMed  Google Scholar 

  51. Zhou Y, Zhang N, Zhou X, Hu Y, Hao G, Li X, Jiang W (2019) Design of recyclable superhydrophobic PU@Fe3O4@PS sponge for removing oily contaminants from water. Ind Eng Chem Res 58:3249–3257

    Article  CAS  Google Scholar 

  52. Wang Z, Yang W, Sun F, Zhang P, He Y, Wang X, Luo D, Ma W, Sergio G-C (2019) Construction of a superhydrophobic coating using triethoxyvinylsilane-modified silica nanoparticles. Surf Eng 35:418–425

    Article  CAS  Google Scholar 

  53. Rahmani Z, Samadi MT, Kazemi A, Rashidi AM, Rahmani AR (2017) Nanoporous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. J Environ Chem Eng 5:5025–5032

    Article  CAS  Google Scholar 

  54. Cheng Q, Liu C, Liu S (2019) Fabrication of a robust superhydrophobic polyurethane sponge for oil–water separation. Surf Eng 35:403–410

    Article  CAS  Google Scholar 

  55. Zhang X, Zhi D, Zhu W, Sathasivam S, Parkin IP (2017) Facile fabrication of durable superhydrophobic SiO2/polyurethane composite sponge for continuous separation of oil from water. RSC Adv 7:11362–11366

    Article  CAS  Google Scholar 

  56. Shuai Q, Yang X, Luo Y, Tang H, Luo X, Tan Y, Ma M (2015) A superhydrophobic poly(dimethylsiloxane)-TiO2 coated polyurethane sponge for selective absorption of oil from water. Mater Chem Phys 162:94–99

    Article  CAS  Google Scholar 

  57. Da Costa RMD, Hungerbühler G, Saraiva T, De Jong G, Moraes RS, Furtado EG, Silva FM, De Oliveira GE, Ferreira LS, Fernando Gomes DS (2017) Green polyurethane synthesis by emulsion technique: a magnetic composite for oil spill removal. Polimeros 27:273–279

    Article  Google Scholar 

  58. Kaikade DS, A.S. (2022) Sabnis Polyurethane foams from vegetable oil-based polyols: a review. Polym Bull. https://doi.org/10.1007/s00289-022-04155-9

    Article  Google Scholar 

  59. De Nino A, Olivito F, Algieri V, Costanzo P, Jiritano A, Tallarida MA, Maiuolo L (2021) Efficient and fast removal of oils from water surfaces via highly oleophilic polyurethane composites. Toxics 9:186

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li H, Liu L, Yang F (2012) Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar Pollut Bull 64:1648–1653

    Article  CAS  PubMed  Google Scholar 

  61. Sam EK, Sam DK, Chen J, Lv X, Liu J (2020) Hydrophobic porous BN/SiO2@PU as ternary adsorbents for efficient oil/water separation. J Porous Mater 27:1149–1158

    Article  CAS  Google Scholar 

  62. Rong J, Zhang T, Qiu F, Xu J, Zhu Y, Yang D, Dai Y (2018) Design and preparation of efficient, stable and superhydrophobic copper foam membrane for selective oil absorption and consecutive oil–water separation. Mater Des 142:83–92

    Article  CAS  Google Scholar 

  63. Zhu H, Chen D, An W, Li N, Xu Q, Li H, He J, Lu J (2015) A robust and cost-effective superhydrophobic graphene foam for efficient oil and organic solvent recovery. Small 11:5222–5229

    Article  CAS  PubMed  Google Scholar 

  64. Teas C, Kalligeros S, Zanikos F, Stournas S, Lois E, Anastopoulos G (2001) Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 140:259–264

    Article  CAS  Google Scholar 

  65. Qi X, Jia Z, Yang Y, Liu H (2011) Sorption capacity of new type oil absorption felt for potential application to ocean oil spill. Procedia Environ Sci 10:849–853

    Article  CAS  Google Scholar 

  66. Tuncaboylu DC, Okay O (2009) Preparation and characterization of single-hole macroporous organogel particles of high toughness and superfast responsivity. Eur Polym J 45:2033–2042

    Article  CAS  Google Scholar 

  67. Ye S, Wang B, Shi Y, Wang B, Zhang Y, Feng Y, Han W, Liu C, Shen C (2020) Superhydrophobic and superelastic thermoplastic polyurethane/multiwalled carbon nanotubes porous monolith for durable oil/water separation. Compos Commun 21:100378

    Article  Google Scholar 

  68. Wei QF, Mather RR, Fotheringham AF, Yang RD (2003) Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar Pollut Bull 46:780–783

    Article  CAS  PubMed  Google Scholar 

  69. Carmody O, Frost R, Xi Y, Kokot S (2007) Adsorption of hydrocarbons on organo-clays—Implications for oil spill remediation. J Colloid Interface Sci 305:17–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vietnam Academy of Science and Technology for the financial support.

Funding

This research was financially supported by Vietnam Academy of Science and Technology (Code CP1862.02/20-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Vu Giang.

Ethics declarations

Conflict of interest

There is no conflict of interest and all authors have agreed with this submission and they are aware of the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dat, N.H., Tuan, V.M., Huynh, M.D. et al. Novel Method for Producing Oleophilic Polyurethane Foam to Remove Oil from Open Water. J Polym Environ 30, 5012–5023 (2022). https://doi.org/10.1007/s10924-022-02565-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02565-4

Keywords

Navigation