[go: up one dir, main page]

Skip to main content
Log in

Synthesis and Characterization of Biodegradable Starch-Polyacrylamide Graft Copolymers Using Starches with Different Microstructures

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The effects of starch structures, in particular amylose content, on grafting reactions were investigated using thermal gravimetric analysis (TGA), nuclear magnetic resonance, X-ray diffraction (XRD). As a model system, corn starches with different amylose contents (0, 26, 50 and 80 %) were grafted onto acrylamide to produce superabsorbent polymers (SAPs). The weight loss measured by TGA at different temperature was used to analyze the grafting ratio in quantity. In general, the grafting ratio increased (about 10 %) with increasing starch amylose content, and graft chain segment lengths were much lower for the amylopectin-rich (waxy) starch. The high molecular weight and branched structure of the amylopectin reduced the mobility of the polymer chains and increased viscosity, which resulted in resistance to chain growth. The water absorption capability was increased with increasing amylose content for the starch-based SAPs. XRD detection showed that the crystalline structure of all starches was destroyed after grafting reactions. The thermal stability of the polyacrylamide grafted onto the starches increased by about 10 °C, which could be explained by the strong bonding between the grafted polymer chains and the starch matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Carbohydr Polym 66:229

    Article  CAS  Google Scholar 

  2. Zohuriaan MJ, Kabiri K (2008) Iran Polym J 17:451

    Google Scholar 

  3. Arvanitoyannis I (1999) J. Macromol Sci Rev Macromol Chem Phys C39:205

    Article  CAS  Google Scholar 

  4. Psomiadou E, Arvanitoyannis I, Biliaderis CG, Ogawa H, Kawasaki N (1997) Carbohydr Polym 33:227

    Article  CAS  Google Scholar 

  5. Zhang LM, Chen DQ (2001) Starch-Stärke 53:311

    Article  CAS  Google Scholar 

  6. Zhang LM, Hu ZH (2002) Starch-Stärke 54:290

    Article  CAS  Google Scholar 

  7. Shaikh MM, Lonikar SV (2009) J Appl Polym Sci 114:2893

    Article  CAS  Google Scholar 

  8. Han TL, Kumar RN, Rozman HD, Noor MAM (2003) Carbohydr Polym 54:509

    Article  CAS  Google Scholar 

  9. Nakason C, Wohmang T, Kaesaman A, Kiatkamjornwong S (2010) Carbohydr Polym 81:348

    Article  CAS  Google Scholar 

  10. Cho CG, Lee K (2002) Carbohydr Polym 48:125

    Article  CAS  Google Scholar 

  11. Song H, Zhang SF, Ma XC, Wang DZ, Yang JZ (2007) Carbohydr Polym 69:189

    Article  CAS  Google Scholar 

  12. Fanta GF, Felker FC, Shogren RL (2004) Carbohydr Polym 56:77

    Article  CAS  Google Scholar 

  13. Ma YHC, Manolache S, Sarmadi M, Denes FS (2004) Starch-Stärke 56:47

    Article  CAS  Google Scholar 

  14. Samaha SH, Nasr HE, Hebeish A (2005) J Polym Res 12:343

    Article  CAS  Google Scholar 

  15. Xu SM, Wei J, Feng S, Wang JD, Li XS (2004) J Polym ResTaiwan 1(1):211

    Article  Google Scholar 

  16. Xu S, Wang J, Wu R, Wang J (2006) Carbohydr Polym 66:55

    Article  CAS  Google Scholar 

  17. Meshram MW, Patil VV, Mhaske ST, Thorat BN (2009) Carbohydr Polym 75:71

    Article  CAS  Google Scholar 

  18. Mostafa KM, Morsy MS (2004) Starch-Stärke 56:254

    Article  CAS  Google Scholar 

  19. Kaith BS, Jindal R, Jana AK, Maiti M (2010) Bioresour Technol 101:6843

    Article  CAS  Google Scholar 

  20. Salam A, Pawlak JJ, Venditti RA, Ei-tahlawy K (2010) Biomacromolecules 11:1453

    Article  CAS  Google Scholar 

  21. Yamaguchi M, Watamoto H, Sakamoto M (1988) Carbohydr Polym 9:15

    Article  CAS  Google Scholar 

  22. De Bruyn H, Sprong E, Gaborieau M, Roper JA, Gilbert RG (2007) J Polym Sci Pol Chem 44:4185

    Article  Google Scholar 

  23. Comer CM, Jessop JLR (2008) Starch-Stärke 60:335

    Article  CAS  Google Scholar 

  24. Zou W, Yu L, Liu X, Qiao DL, Zhang X, Chen L, Zhang R (2012) Carbohydr Polym 87:1583

    Article  CAS  Google Scholar 

  25. Meister JJ (1981) J Rheol 25:487

    Article  CAS  Google Scholar 

  26. Wu J, Lin J, Zhou M, Wei C (2000) Macromol Rapid Commun 21:1032

    Article  CAS  Google Scholar 

  27. McNeill IC, Sadeghi SMT (1990) Polym Degrad Stab 29:233

    Article  CAS  Google Scholar 

  28. Athawale VD, Lele V (2000) Starch-Stärke 52:205

    Article  CAS  Google Scholar 

  29. Liu X, Yu L, Xie F, Li M, Chen L, Li X (2010) Starch-Stärke 62:139

    Article  CAS  Google Scholar 

  30. Liu X, Yu L, Liu H, Chen L, Li L (2009) Cereal Chem 86:383

    Article  CAS  Google Scholar 

  31. Soares RMD, Lima AMF, Oliveira RVB, Pires ATN, Soldi V (2005) Polym Degrad Stab 90:449

    Article  CAS  Google Scholar 

  32. Zhang X, Golding J, Burgar I (2002) Polymer 43:5791

    Article  CAS  Google Scholar 

  33. Beninca C, Demiate IM, Lacerda LG, Carvalho Filho MAS, Ionashiro M, Schnitzler E (2008) Eclet Quím São Paulo 33:13

    CAS  Google Scholar 

  34. Fares MM, Ei-faqeeh AS, Osman ME (2003) J Polym Res Taiwan 10:119

    Article  CAS  Google Scholar 

  35. Athawale VD, Lele V (1998) Carbohydr Polym 35:21

    Article  CAS  Google Scholar 

  36. Athawale VD, Rathi SC (1999) J Macromol Sci Rev Macromol Chem Phys C39:445

    Article  CAS  Google Scholar 

  37. Liu H, Yu L, Xie W, Chen L (2006) Carbohydr Polym 65:357

    Article  CAS  Google Scholar 

  38. Gurruchaga M, Goni I, Vazquez B, Valero M, Guzman GM (1992) Macromolecules 25:3009

    Article  CAS  Google Scholar 

  39. Pal S, Nasim T, Patra A, Ghosh S, Panda AB (2010) Int J Biol Macromol 47:623

    Article  CAS  Google Scholar 

  40. Sen G, Kumar R, Ghosh S, Pal S (2009) Carbohydr Polym 77:822

    Article  CAS  Google Scholar 

  41. Zhang Q, Xu K, Wang P (2008) Fibers Polym 9:271

    Article  CAS  Google Scholar 

  42. Michaels AS (1954) Ind Eng Chem 46:1485

    Article  CAS  Google Scholar 

  43. Ghosh S, Sen G, Jha U, Pal S (2010) Bioresour Technol 101:9638

    Article  CAS  Google Scholar 

  44. Rath SK, Singh RP (1997) J Appl Polym Sci 66:1721

    Article  CAS  Google Scholar 

  45. Rath SK, Singh RP (1998) J Appl Polym Sci 70:1795

    Article  CAS  Google Scholar 

  46. Douzals JP, Marechal PA, Coquille JC, Gervais P (1996) J Agric Food Chem 44:1403

    Article  CAS  Google Scholar 

  47. Cheetham NWH, Tao LP (1998) Carbohydr Polym 36:277

    Article  CAS  Google Scholar 

  48. Liu H, Yu L, Simon G, Dean K, Chen L (2009) Carbohydr Polym 77:662

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors from SCUT, China, would like to acknowledge the research funds NFSC (21174043, 31130042), RFDPHE (20110172110027) and FRFCU (2012ZZ0085). Thanks also to Dr S. Li (CSIRO) for contact angle measurements and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, W., Liu, X., Yu, L. et al. Synthesis and Characterization of Biodegradable Starch-Polyacrylamide Graft Copolymers Using Starches with Different Microstructures. J Polym Environ 21, 359–365 (2013). https://doi.org/10.1007/s10924-012-0473-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0473-y

Keywords

Navigation