Abstract
In this paper we systematically evaluate the performance of several state-of-the-art local feature detectors and descriptors in the context of longitudinal registration of retinal images. Longitudinal (temporal) registration facilitates to track the changes in the retina that has happened over time. A wide number of local feature detectors and descriptors exist and many of them have already applied for retinal image registration, however, no comparative evaluation has been made so far to analyse their respective performance. In this manuscript we evaluate the performance of the widely known and commonly used detectors such as Harris, SIFT, SURF, BRISK, and bifurcation and cross-over points. As of descriptors SIFT, SURF, ALOHA, BRIEF, BRISK and PIIFD are used. Longitudinal retinal image datasets containing a total of 244 images are used for the experiment. The evaluation reveals some potential findings including more robustness of SURF and SIFT keypoints than the commonly used bifurcation and cross-over points, when detected on the vessels. SIFT keypoints can be detected with a reliability of 59% for without pathology images and 45% for with pathology images. For SURF keypoints these values are respectively 58% and 47%. ALOHA descriptor is best suited to describe SURF keypoints, which ensures an overall matching accuracy, distinguishability of 83%, 93% and 78%, 83% for without pathology and with pathology images respectively.
Similar content being viewed by others
Notes
Initially collected image.
Image collected after 1 year.
References
Zitova, B., and Flusser, J., Image registration methods: A survey. Image Vis Comput. 21(11):977–1000, 2003.
Saha, S.K., Xiao, D., Frost, S., and Kanagasingam, Y., A two-step approach for longitudinal registration of retinal images. J Med Syst. 40(12):277, 2016.
Aguilar, W., Frauel, Y., Escolano, F., Martinez-Perez, M.E., Espinosa-Romero, A., and Lozano, M.A., A robust graph transformation matching for non-rigid registration. Image Vis Comput. 27(7):897–910, 2009.
Xing, C., and Qiu, P., Intensity-based image registration by nonparametric local smoothing. IEEE Trans Pattern Anal Mach Intell. 33(10):2081–2092, 2011.
Zheng, Y., Daniel, E., Hunter, A.A., Xiao, R., Gao, J., Li, H., Maguire, M.G., Brainard, D.H., and Gee, J.C., Landmark matching based retinal image alignment by enforcing sparsity in correspondence matrix. Med Image Anal. 18(6):903–913, 2014.
Can, A., Stewart, C.V., Roysam, B., and Tanenbaum, H.L., A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE Trans Pattern Anal Mach Intell. 24(3):347–364, 2002.
Xiao, D., Vignarajan, J., Lock, J., Frost, S., Tay-Kearney, M., and Kanagasingam, Y., Retinal image registration and comparison for clinical decision support. Australas Med J. 5(9):507, 2012.
Chen, J., Tian, J., Lee, N., Zheng, J., Smith, R.T., and Laine, A.F., A partial intensity invariant feature descriptor for multimodal retinal image registration. IEEE Trans Biomed Eng. 57(7):1707–1718, 2010.
Ghassabi, Z., Shanbehzadeh, J., Mohammadzadeh, A., and Ostadzadeh, S.S., Colour retinal fundus image registration by selecting stable extremum points in the scale-invariant feature transform detector. IET Image Process. 9(10):889–900, 2015.
Hernandez-Matas C, Zabulis X, Argyros AA (2015) Retinal image registration based on keypoint correspondences, spherical eye modeling and camera pose estimation. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 5650–5654. IEEE.
Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L., Speeded-up robust features (SURF). Comput Vis Image Underst. 110(3):346–359, 2008.
Bay, H., Tuytelaars, T., and Van Gool, L., Surf: Speeded up robust features. Eur Conf Comput Vis. 2006:404–417, 2006.
Lowe, D., Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 60(2):91–110, 2004.
Işık, Ş., and Özkan, K., A comparative evaluation of well-known feature detectors and descriptors. Int J Appl Math Electron Comput. 3(1):1–6, 2015.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and Van Gool, L., A comparison of affine region detectors. Int J Comput Vis. 65(1–2):43–72, 2005.
Leutenegger S, Chli M, Siegwart RY (2011) BRISK: Binary robust invariant scalable keypoints. 2011 I.E. International Conference on Computer Vision (ICCV), 2011, pp. 2548–2555. IEEE.
Bhuiyan A, Nath B, Chua J, Ramamohanarao K (2007) Automatic detection of vascular bifurcations and crossovers from color retinal fundus images. Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, 2007, pp. 711–718. IEEE.
Harris, C., and Stephens, M., A combined corner and edge detector. Alvey Vision Conference. 15(50):10–5244, 1988.
Lindeberg T (1994) Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, 1994, ISBN 0–7923–9418-6.
Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. European conference on computer vision, 2006, pp. 430–443.
Fairchild MD (2005) Color Appearance Models. Second Edition, John Wiley & Sons.
Bhuiyan A, Nath B, Chua J, Kotagiri R (2007) Blood vessel segmentation from color retinal images using unsupervised texture classification. IEEE Int. Conf. Image Process. 2007, pp. V-521.
Juan, L., and Gwun, O., A comparison of SIFT, PCA-SIFT and SURF. Int J Image Process (IJIP). 3:143–152, 2009.
Ghassabi, Z., Shanbehzadeh, J., Sedaghat, A., and Fatemizadeh, E., An efficient approach for robust multimodal retinal image registration based on UR-SIFT features and PIIFD descriptors. EURASIP J Image Video Process. 1(2013):25, 2013.
Calonder, M., Lepetit, V., Strecha, C., and Fua, P., Brief: Binary robust independent elementary features. Eur Conf Comput Vis. 2010:778–792, 2010.
Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., and Fua, P., BRIEF: Computing a local binary descriptor very fast. IEEE Trans Pattern Anal Mach Intell. 34(7):1281–1298, 2012.
Saha S, Démoulin V (2012) ALOHA: An efficient binary descriptor based on Haar features. 19th IEEE International Conference on Image Processing (ICIP), 2012, pp. 2345–2348.
Demoulin V, Saha S, Oisel L, Perez P (2014) Generating a binary descriptor representing an image patch. U.S. Patent 8, 687,892. 2014.
Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. Conf. Comput. Vis. Pattern Recognit. 2001, I-I.
Viola, P., and Jones, M., Robust real-time object detection. Int J Comput Vis. 4:34–47, 2001.
Saha, S., Tahtali, M., Lambert, A., and Pickering, M., Perceptual dissimilarity: A measure to quantify the degradation of medical images. Int Conf Digital Image Comput Tech Appl (DICTA). 2012:1–6, 2012.
Hernandez-Matas C, Zabulis X, Triantafyllou A, Anyfanti P, Douma S, Argyros AA (2017) FIRE: Fundus Image Registration Dataset. J. Modeling Ophthalmol.
Miksik O, Mikolajczyk K (2012) Evaluation of local detectors and descriptors for fast feature matching. 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 2681–2684.
Tuytelaars, T., and Mikolajczyk, K., Local invariant feature detectors: A survey. Found Trends Comput GraphVis. 3(3):177–280, 2008.
Stewart, C.V., Tsai, C., and Roysam, B., The dual-bootstrap iterative closest point algorithm with application to retinal image registration. IEEE Trans Med Imaging. 22(11):1379–1394, 2003.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Sajib Kumar Saha declares that he has no conflict of interest. Di Xiao declares that he has no conflict of interest. Shaun Frost declares that he has no conflict of interest. Yogesan Kanagasingam declares that he has no conflict of interest.
Ethical Approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Additional information
This article is part of the Topical Collection on Image & Signal Processing
Rights and permissions
About this article
Cite this article
Saha, S.K., Xiao, D., Frost, S. et al. Performance Evaluation of State-of-the-Art Local Feature Detectors and Descriptors in the Context of Longitudinal Registration of Retinal Images. J Med Syst 42, 57 (2018). https://doi.org/10.1007/s10916-018-0911-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-018-0911-z