[go: up one dir, main page]

Skip to main content
Log in

Analysis to Establish Differences in Efficiency Metrics Between Operating Room and Non-Operating Room Anesthesia Cases

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

While a number of studies have examined efficiency metrics in the operating rooms (ORs), there are few studies addressing non-operating room anesthesia (NORA) metrics. The standards established in the realm of OR studies may not apply to ongoing investigations of NORA efficiency. We hypothesize that there are significant differences in these commonly used metrics. Using retrospective data from a single tertiary care hospital in the 2015 calendar year, we measured turnover times, cancellation rates, first case start delays, and scheduling error (actual time minus scheduled time) for the OR and NORA settings. On average, TOTs for NORA cases were approximately 50% shorter than OR cases (16.21 min vs. 37.18 min), but had a larger variation (11.02 min vs. 8.12 min). NORA cases were 64% as likely to be cancelled compared to OR cases. In contrast, NORA cases had an average first case start delay that was two times greater than that of OR cases (24.45 min vs. 10.58 min), along with over double the standard deviation (11.97 min vs. 5.90 min). Case times for NORA settings tended to be overestimated (−4.07 min versus −2.12 min), but showed less variation (8.61 min vs. 17.92 min). In short, there are significant differences in common efficiency metrics between OR and NORA cases. Future studies should elucidate and validate appropriate efficiency benchmarks for the NORA setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagrebetsky, A., Gabriel, R.A., Dutton, R.P., and Urman, R.D., Growth of nonoperating room anesthesia care in the United States: A contemporary trends analysis. Anesth. Analg. 124:1261–1267, 2017. doi:10.1213/ANE.0000000000001734.

    Article  PubMed  Google Scholar 

  2. Tsai, M.H., Huynh, T.T., Breidenstein, M.W., O’Donnell, S.E., and Ehrenfeld, J.M., Urman RD. A System-Wide Approach to Physician Efficiency and Utilization Rates for Non-Operating Room Anesthesia Sites. J. Med. Syst. 41:112, 2017. doi:10.1007/s10916-017-0754-z.

    Article  PubMed  Google Scholar 

  3. Wachtel, R.E., and Dexter, F., Review article: review of behavioral operations experimental studies of newsvendor problems for operating room management. Anesth. Analg. 110:1698–1710, 2010. doi:10.1213/ANE.0b013e3181dac90a.

    Article  PubMed  Google Scholar 

  4. Gordon, T., Paul, S., Lyles, A., and Fountain, J., Surgical unit time utilization review: Resource utilization and management implications. J. Med. Syst. 12:169–179, 1988. doi:10.1007/BF00996639.

    Article  CAS  PubMed  Google Scholar 

  5. Eijkemans, M.J.C., van Houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E.W., and Kazemier, G., Predicting the Unpredictable. Anesthesiology. 112:41–49, 2010. doi:10.1097/ALN.0b013e3181c294c2.

    Article  PubMed  Google Scholar 

  6. Peltokorpi, A., How do strategic decisions and operative practices affect operating room productivity? Health Care Manag. Sci. 14:370–382, 2011. doi:10.1007/s10729-011-9173-8.

    Article  PubMed  Google Scholar 

  7. Macario, A., Are Your Hospital Operating Rooms “Efficient”? Anesthesiology. 105:237–240, 2006.

    Article  PubMed  Google Scholar 

  8. Shaughnessy, T.E., Sedation Services for the Anesthesiologist. Anesthesiol. Clin. North Am. 17:355–363, 1999. doi:10.1016/S0889-8537(05)70101-2.

    Article  Google Scholar 

  9. Wachtel, R.E., Dexter, F., and Dow, A.J., Growth rates in pediatric diagnostic imaging and sedation. Anesth. Analg. 108:1616–1621, 2009. doi:10.1213/ane.0b013e3181981f96.

    Article  PubMed  Google Scholar 

  10. Kolker, A., and Mascarenhas, J., Anesthesia for outfield procedures in cancer patients. Curr. Opin. Anaesthesiol. 28:464–468, 2015. doi:10.1097/ACO.0000000000000207.

    Article  CAS  PubMed  Google Scholar 

  11. Chang, B., and Urman, R.D., Non-operating Room Anesthesia. Anesthesiol. Clin. 34:223–240, 2016. doi:10.1016/j.anclin.2015.10.017.

    Article  PubMed  Google Scholar 

  12. Kruschke, J.K., Bayesian Estimation Supersedes the t Test. J. Exp. Psychol. Gen. 142:573–603, 2012. doi:10.1037/a0029146.

    Article  PubMed  Google Scholar 

  13. Donham, R.T., Mazzei, W.J., and Jones, R.L., Association of Anesthesia Clinical Directors’ Procedural Times Glossary. Glossary of times used for scheduling and monitoring of diagnostic and therapeutic procedures. Am. J. Anesthesiol. 23:3–12, 1996.

    Google Scholar 

  14. Caggiano, N.M., Avery, D.M., and Matullo, K.S., The effect of anesthesia type on nonsurgical operating room time. J. Hand. Surg. [Am.]. 40:1202–9.e1, 2015. doi:10.1016/j.jhsa.2015.01.037.

    Article  Google Scholar 

  15. Chang, B., Kaye, A.D., Diaz, J.H., Westlake, B., Dutton, R.P., Urman, R.D., Complications of non – operating room procedures: outcomes from the National Anesthesia Clinical Outcomes Registry. J. Patient. Saf. 2015. doi:10.1097/PTS.0000000000000156.

  16. Reznick, D., Niazov, L., Holizna, E., Keebler, A., and Siperstein, A., Dedicated teams to improve operative room efficiency. Perioper. Care Oper. Room Manag. 3:1–5, 2016. doi:10.1016/j.pcorm.2016.01.003.

    Article  Google Scholar 

  17. Bhatt, A.S., Carlson, G.W., and Deckers, P.J., Improving operating room turnover time: a systems based approach. J. Med. Syst. 38:148, 2014. doi:10.1007/s10916-014-0148-4.

    Article  PubMed  Google Scholar 

  18. Kodali, B.S., Kim, D., Bleday, R., Flanagan, H., and Urman, R.D., Successful strategies for the reduction of operating room turnover times in a tertiary care academic medical center. J. Surg. Res. 187:403–411, 2014. doi:10.1016/j.jss.2013.11.1081.

    Article  PubMed  Google Scholar 

  19. Gabriel, R.A., Wu, A., Huang, C.-C., Dutton, R.P., and Urman, R.D., National incidences and predictors of inefficiencies in perioperative care. J. Clin. Anesth. 31:238–246, 2016. doi:10.1016/j.jclinane.2016.01.007.

    Article  PubMed  Google Scholar 

  20. Dexter, F., Maxbauer, T., Stout, C., Archbold, L., and Epstein, R.H., Relative influence on total cancelled operating room time from patients who are inpatients or outpatients preoperatively. Anesth. Analg. 118:1072–1080, 2014. doi:10.1213/ANE.0000000000000118.

    Article  PubMed  Google Scholar 

  21. Hoffman, A.S., Matlow, A., Shroff, M., and Cohen, E., Factors impacting same-day cancellation of outpatient pediatric magnetic resonance imaging under anesthesia. Pediatr. Radiol. 45:99–107, 2015. doi:10.1007/s00247-014-3090-1.

    Article  PubMed  Google Scholar 

  22. Dexter, F., Marcon, E., Epstein, R.H., and Ledolter, J., Validation of statistical methods to compare cancellation rates on the day of surgery. Anesth. Analg. 101(2):465–473, 2005. doi:10.1213/01.ane.0000154536.34258.a8.

    Article  PubMed  Google Scholar 

  23. Chen, Y., Gabriel, R.A., Kodali, B.S., and Urman, R.D., Effect of Anesthesia Staffing Ratio on First-Case Surgical Start Time. J. Med. Syst. 40:115, 2016. doi:10.1007/s10916-016-0471-z.

    Article  PubMed  Google Scholar 

  24. Tsai, M.H., Hudson, M.E., Emerick, T.D., and McFadden, D.W., The true relevance of first-case start delays. Am. J. Surg. 209:427–429, 2015. doi:10.1016/j.amjsurg.2014.07.006.

    Article  PubMed  Google Scholar 

  25. Epstein, R.H., and Dexter, F., Influence of Supervision Ratios by Anesthesiologists on First-case Starts and Critical Portions of Anesthetics. Anesthesiology. 116:683–691, 2012. doi:10.1097/ALN.0b013e318246ec24.

    Article  PubMed  Google Scholar 

  26. McIntosh, C., Dexter, F., and Epstein, R.H., The impact of service-specific staffing, case scheduling, turnovers, and first-case starts on anesthesia group and operating room productivity: a tutorial using data from an Australian hospital. Anesth. Analg. 103:1499–1516, 2006. doi:10.1213/01.ane.0000244535.54710.28.

    Article  PubMed  Google Scholar 

  27. Urman, R.D., Sarin, P., Mitani, A., Philip, B., and Eappen, S., Presence of anesthesia resident trainees in day surgery unit has mixed effects on operating room efficiency measures. Ochsner. J. 12:25–29, 2012.

    PubMed  PubMed Central  Google Scholar 

  28. Wright, J.G., Roche, A., Khoury, A.E., Ann Roche, R.N., and Khoury, A.E., Improving on-time surgical starts in an operating room. Can. J. Surg. 53:167–170, 2010. doi:10.1177/0269216309346544.

    PubMed  PubMed Central  Google Scholar 

  29. Wu, A., Brovman, E.Y., Whang, E.E., Ehrenfeld, J.M., and Urman, R.D., The Impact of Overestimations of Surgical Control Times Across Multiple Specialties on Medical Systems. J. Med. Syst. 40:95q, 2016. doi:10.1007/s10916-016-0457-x.

    Article  Google Scholar 

  30. Wu, A., Huang, C.-C., Weaver, M.J., Urman, R.D., Use of historical surgical times to predict duration of primary total knee arthroplasty. J. Arthroplasty. 31(2):2768–2772, 2016.

  31. Joseph Gholson, J., Shah, A.S., Gao, Y., Noiseux, N.O., Gholson, J.J., Shah, A.S., et al., Morbid Obesity and Congestive Heart Failure Increase Operative Time and Room Time in Total Hip Arthroplasty. J. Arthroplast. 31:1–5, 2015. doi:10.1016/j.arth.2015.10.032.

    Google Scholar 

  32. Hamilton, W.G., and Parks, N.L., Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J. Arthroplast. 29:1508–1509, 2014. doi:10.1016/j.arth.2014.01.029.

    Article  Google Scholar 

  33. Liabaud, B., Patrick, D.A., and Geller, J.A., Higher body mass index leads to longer operative time in total knee arthroplasty. J. Arthroplast. 28:563–565, 2013. doi:10.1016/j.arth.2012.07.037.

    Article  Google Scholar 

  34. Dexter, F., Marcario, A., and Cowen, D.S., Staffing and case scheduling times for anesthesia in geographically dispersed locations outside of the operating rooms. Curr. Opin. Anaesthesiol. 19(4):453–458, 2006. doi:10.1097/01.aco.0000236149.90988.7f.

    Article  PubMed  Google Scholar 

  35. Dexter, F., Yue, J.C., and Dow, A.J., Predicting anesthesia times for diagnostic and interventional radiological procedures. Anesth. Analg. 102(5):1491–1500, 2006. doi:10.1213/01.ane.0000202397.90361.1b.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Urman.

Ethics declarations

Funding

None.

Conflict of interest

Albert Wu declares that he has no conflict of interest; Joseph A. Sanford declares that he has no conflict of interest; Mitchell H. Tsai declares that he has no conflict of interest; Stephen E. O’Donnell declares that he has no conflict of interest; Billy K. Tran declares that he has no conflict of interest; Richard D. Urman declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, A., Sanford, J.A., Tsai, M.H. et al. Analysis to Establish Differences in Efficiency Metrics Between Operating Room and Non-Operating Room Anesthesia Cases. J Med Syst 41, 120 (2017). https://doi.org/10.1007/s10916-017-0765-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0765-9

Keywords

Navigation