[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Imaging Systems of Human Eye: A Review

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The eyes are complex sensory organs and are designed to optimize vision under conditions of varying light. There are a number of eye disorders that can influence vision. Eye disorders among the elderly are a major health problem. With advancing age, the normal function of eye tissues decreases and there is an increased incidence of ocular pathology. The most common causes of age related eye disorder and visual impairment in the elderly are cataracts and primary open angle glaucoma. Different imaging systems are available to visualize the different parts of the eye non-invasively with higher accuracy. This paper discusses the various techniques available namely, computed tomography, confocal laser scanning microscopy, magnetic resonance imaging, optical coherence tomography, ultrasound imaging, infrared thermography for the imaging of the different eye abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Acharya, U. R., Ng, E. Y. K., and Suri, J. S., Image modelling of human eye. Artech House, April, USA, 2008.

    Google Scholar 

  2. Atta, H. R., Imaging of the optic nerve with standardised echography. Eye 2:358–366, 1988.

    Google Scholar 

  3. Augsburger, J. J., Peyster, R. G., Markoe, A. M., Guillet, E. G., Shields, J. A., and Haskin, M. E., Computed tomography of posterior uveal melanomas. Arch. Ophthalmol. 105(11):1512–1516, 1987.

    Google Scholar 

  4. Barot B. A., and Zon, L. I., Realizing the potential of zebrafish as a model for human disease. Physiol. Genomics 2:49–51, 2000.

    Google Scholar 

  5. Bouma, B., Handbook of optical coherence tomography. Informa Healthcare; 1st edition, 2001.

  6. Byrne, S. F., Evaluation of the optic nerve with standardized echography. In: Smith, J. L. (Ed.), Neuro ophthalmology now. New York: Field, Raicha, 1986, pp. 45–66.

    Google Scholar 

  7. Byrne, S. F., Gendron, E. K., and Glaser, J. S., Diameter of normal extraocular recti muscles with echography. Am. J. Ophthalmol. 112:706–713, 1991.

    Google Scholar 

  8. Chauhan, B. C., LeBlanc, R. P., and McCormick, T. A., Test–retest variability of topographic measurements with confocal scanning laser tomography in patients with glaucoma and control subjects. Am. J. Ophthalmol. 118:9–15, 1994.

    Google Scholar 

  9. Christine, P., Wolffsohn, J., and Jacinto Santodomingo-Rubido, J., The effect of contact lens wear on dynamic ocular surface temperature. Contact Lens Anterior Eye 28:29–36, 2005.

    Article  Google Scholar 

  10. Clark, R. A., and Demer, J. L., Effect of aging on human rectus extraocular muscle paths demonstrated by magnetic resonance imaging. Am. J. Ophthalmol. 134(6):872–878, 2002.

    Article  Google Scholar 

  11. Dick, A. D., Nangia, V., and Atta, H. R., Standardised echography in the differential diagnosis of extraocular muscle enlargement. Eye 6:610–617, 1992.

    Google Scholar 

  12. Dunsby C., and French, P. M. W., Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D. 36:R207, 2003.

    Article  Google Scholar 

  13. Eter, N., Garbe, S., Pauleit, D., Schuttoff, T., and Schuller, H., Magnetic resonance imaging analysis of anterior and posterior eye segment displacement during ocular gaze shifts. Eur. J. Ophthalmol. 13(2):196–201, 2003.

    Google Scholar 

  14. Fercher, A. F., and Hitzenberger, C. K., Optical coherence tomography. In: Wolf, E., (Ed.) Progress in optics. 44:215–302, 2002.

  15. Fercher, A. F., Drexler, W., Hitzenberger, C. K., and Lasser, T., Optical coherence tomography—principles and applications. Rep. Prog. Phys. 66:239–303, 2003.

    Article  Google Scholar 

  16. Fielding, J. A., Imaging the eye with ultrasound. Br. J. Hosp. Med. 16;47(11):805–815, 1992.

    Google Scholar 

  17. Fielder, A. R., Winder, A. F., and Sheridaidah, G. A. K., Problems with corneal arcus. Trans. Ophtalmol. Soc. UK 101(1):22–26, 1981.

    Google Scholar 

  18. Frau, E., Choroidal melanomas. J. Fr. Ophtalmol. 26(4):417–418, 2003.

    Google Scholar 

  19. Glass, A. S., and Dham, R., The zebrafish as model organism for eye development. Ophthalmic. Res. 36:4–24, 2004.

    Article  Google Scholar 

  20. Goh, A. S., Francis, I. C., Kappagoda, M. B., and Filipic, M., Orbital inflammation in a patient with extrascleral spread of choroidal malignant melanoma. Clin. Exp. Ophthalmol. 29(2):97–99, 2001.

    Article  Google Scholar 

  21. Goldsmith, P., and Harris, W. A., The zebrafish as a tool for understanding the biology of visual disorders. Semin. Cell Dev. Biol. 14:11–18, 2003.

    Article  Google Scholar 

  22. Grossniklaus, H. E., Cingle, K. A., Yoon, Y. D., Ketkar, N., L’Hernault, N., and Brown, S., Correlation of histologic 2-dimensional reconstruction and confocal scanning laser microscopic imaging of choroidal neovascularization in eyes with age-related maculopathy. Arch. Ophthalmol. 118:625–629, 2000.

    Google Scholar 

  23. Gugleta, K., Selim, O., and Josef, F., Is Corneal temperature correlated with blood-flow velocity in the ophthalmic artery. Current Eye Res. 19(6):496–501, 1999.

    Article  Google Scholar 

  24. Hahnel, C., Somodi, S. W., Dieter, G., and Guthoff, R. F., The keratocyte network of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy. Cornea 19(2):185–193, 2000.

    Article  Google Scholar 

  25. Haritoglou, C., Neubauer, A. S., Herzum, H., Freeman, W. R., and Mueller, A. J., Interobserver and intraobserver variability of measurements of uveal melanomas using standardised echography. Br. J. Ophthalmol. 86(12):1390–1394, 2002.

    Article  Google Scholar 

  26. Hazenfratz, G., and Lewan, U., Results of standardized echography in orbital diseases. A review of 311 cases. In: Till, P., (Ed.) Ophthalmic echography. 13:135–144, 1993.

  27. Hee, M. R., Puliafito, C. A., and Wong, C., Optical coherence tomography of central serous chorioretinopathy. Am. J. Ophthalmol. 120:65–74, 1995.

    Google Scholar 

  28. Holmberg, A., The temperature of the eye during the application of hot packs and after milk injections. Acta. Ophth. 30:347, 1952.

    Article  Google Scholar 

  29. Hosten, N., A.-J. Lemke, A. J., Bornfeld, N., Walmuth, R., Schweiger, U., Terstegge, K., and Felix, R., Fast spin-echo MR imaging of the eye. European Radiol. 6(6):900–903, 1996.

    Google Scholar 

  30. http://www.owsp.org/BlindnessFAQs/BlindnessFAQs/tabid/466/Default.aspx, “Blindness facts: The problem of world blindness”(accessed on 27th January 2008).

  31. Petrou-Binder, S., Thermotography shows ‘enormous promise’ for diagnosis and treatment of eye diseases” http://www.escrs.org/eurotimes/March2003/thermo.asp (Last accessed on 27th Jan 2008).

  32. http://www.drgdiaz.com/images/eye-rbn.shtml, “Ultrasound greyscale eye image” (Last accessed on 27th January 2008).

  33. Imai, M., Iijima, H., and Goth, T., Optical coherence tomography of successfully repaired idiopathic macular holes. Am. J. Ophthalmol. 128:621–627, 1999.

    Article  Google Scholar 

  34. Ip, M., Garza-Karren, C., and Duker, J. S., Differentiation of degenerative retinoschisis from retinal detachment using optical coherence tomography. Ophthalmol. 106:600–605, 1999.

    Google Scholar 

  35. Ishikawa, H., Michelle, L., Gabriele, W. G., Ferguson, D. R., Hammer, D. X., Paunescu, A. L., Beaton, S. A., and Schuman, J. S., Retinal nerve fiber layer assessment using optical coherence tomography with active optic nerve head tracking. Investig. Ophthalmol. Vis. Sci. 47:964–996, 2006.

    Article  Google Scholar 

  36. Kak, A. C., and Slaney, M., Principles of computerized tomographic imaging. IEEE Press, 1988.

  37. Kalkman, E., and Baxter, G., Melanoma. Clin. Radiol. 59(4):313–326, 2004.

    Article  Google Scholar 

  38. Kasuga, Y., Arai, J., and Akimoto, M., Optical coherence tomography confirms early closure of macular holes. Am. J. Ophthalmol. 130:673–676, 2000.

    Article  Google Scholar 

  39. Krzizok, T. h., Kaufmann, H., and Traupe, H., Elucidation of the restrictive motility disorder in high myopia by MRI. Arch. Ophthalmol. 115:1019–1027, 1997.

    Google Scholar 

  40. McMahon, C., Semina, E. V., and Link, B. A., Using zebrafish to study the complex genetics of glaucoma. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 138:343–350, 2004.

    Article  Google Scholar 

  41. Mafee, M. F., Peyman, G. A., and McKusick, M. A., Malignant uveal melanoma and similar lesions studied by computed tomography. Radiology 156(2):403–408, 1985.

    Google Scholar 

  42. Mapstone, R., Ocular thermography. Brit. J. Ophthalmol. 54(11):751–754, 1985.

    Article  Google Scholar 

  43. Mapstone, R., Determinants of ocular temperature. Brit. J. Ophthalmol. 52(10):729–741, 1965.

    Article  Google Scholar 

  44. Mapstone, R., Measurement of corneal temperature. Experimental Eye Res. 7(2):237–243, 1968a.

    Article  Google Scholar 

  45. Mapstone, R., Normal thermal patterns in cornea and periorbital skin. Brit. J. Ophthalmol. 52(11):818–827, 1968b.

    Article  Google Scholar 

  46. Massin, P., Allouch, C., and Haouchine, B., Optical coherence tomography of idiopathic macular epiretinal membrane before and after surgery. Am. J. Ophthalmol. 130:732–739, 2000.

    Article  Google Scholar 

  47. Muscat, S., Parks, S., Kemp, E., and Keating, D., Secondary retinal changes associated with choroidal naevi and melanomas documented by optical coherence tomography. Br. J. Ophthalmol. 88(1):120–124, 2004.

    Article  Google Scholar 

  48. Naik, M. N., Kishore, T. L., Chandra, S. G., and Santosh, G. H., Interpretation of computed tomography imaging of the eye and orbit. A systematic approach. Indian J. Opthomol. 50(4):339–353, 2002.

    Google Scholar 

  49. Otani, T., Kishi, S., and Maruyama, Y., Patterns of diabetic macular edema with optical coherence tomography. Am. J. Ophthalmol. 127:688–693, 1999.

    Article  Google Scholar 

  50. Pavlin, C. J., and Foster, F. S., Ultrasound biomicroscopy of the eye. Springer, New York, 1995.

    Google Scholar 

  51. Pavlin, C. J., and Foster, F. S., Ultrasound biomicroscopy. High-frequency ultrasound imaging of the eye at microscopic resolution. Radiol. Clin. North Am. 36(6):1047–1058, 1998.

    Article  Google Scholar 

  52. Phelps, C. D., Thompson, H. S., and Ossoining, K. C., The diagnosis and prognosis of atypical carotid-cavernous fistula (red eye-shunt syndrome). Am. J. Ophthalmol. 93:423–426, 1982.

    Google Scholar 

  53. Ramachandran, H., Imaging through turbid media. Curr. Sci. 76:1334, 2003.

    Google Scholar 

  54. Rao, K. D., Verma, Y., Patel, H. S., and Gupta, P. K., Non-invasive ophthalmic imaging of adult zebrafish eye using optical coherence tomography. Current Sci. 90(11):1506–1510, 2006.

    Google Scholar 

  55. Ring, E. F. J., Progress in the measurement of human body temperature. IEEE Eng. Med. Biol. Mag. 17(4):19–24, 1998.

    Article  Google Scholar 

  56. Rysä, P., and Sarvaranta, J., Thermography of the eye during cold stress. Acta Ophthalmol., Suppl. 123:234–239, 1973.

    Google Scholar 

  57. Rysä, P., and Sarvaranta, J., Corneal temperature in man and rabbit. Observations made using an infra-red camera and a cold chamber. Acta Ophthalmol. 52(6):810–816, 1974.

    Google Scholar 

  58. Sander, B., Larsen, M., Thrane, L., Hougaard, J. L., and Jørgensen, T. M., Enhanced optical coherence tomography imaging by multiple scan averaging. Brit. J. Ophthalmol. 89:207–212, 2005.

    Article  Google Scholar 

  59. Sheppard, C., Confocal laser scanning microscopy. Springer-Verlag New York, Inc; 1 edition, 1997.

  60. Song, G., Tian, W., Xiao, L., Lian, Z., Zhang, Z., and Li, J., Computed tomography and magnetic resonance imaging of choroidal melanoma. Yan Ke Xue Bao 6(3–4):76–79, 1990.

    Google Scholar 

  61. Stark, D. D, William, G., and Jr. Bradley, Magnetic resonance imaging. C.V. Mosby; 3rd edition, 1999.

  62. Szabo, T., Diagnostic ultrasound imaging: inside out (Biomedical Engineering). Academic, 1 ed, 2004.

  63. Tien, H. S., Greenfield, D. S., and Mistlberger, A., Optical coherence tomography and scanning laser polarimetry in normal, ocular hypertensive and glaucomatous eyes. Am. J. Ophthalmol. 129:129–135, 2000.

    Article  Google Scholar 

  64. Tian, S., Nishida, Y., Isberg, B., and Lennerstrand, G., MRI measurements of normal extraocular muscles and other orbital structures. Graefes Arch. Clin. Exp. Ophthalmol. 238(5):393–404, 2000.

    Article  Google Scholar 

  65. Tomita, K., Katada, K., Anno, H., Ogura, Y., Takeshita, G., and Koga, S., An application of dynamic CT for diagnosis of abnormal external ocular muscle movement. Nippon Igaku Hoshasen Gakkai Zasshi 53(10):1166–1177, 1993.

    Google Scholar 

  66. Uchida, H., Brigatti, L., and Caprioli, J., Detection of structural damage from glaucoma with confocal laser image analysis. Invest. Ophthalmol. Vis. Sci. 37:2393–2401, 1996.

    Google Scholar 

  67. Viviane, G., Joel, S. S., Ellen, H., Gadi, W., Anthony, C., Ronald, M., David, L., Serineh, V., Leonardo, V., Helena, M. P., Pedut-Kloizman, T., Fujimoto, J. G., and Mattox, C., Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmol. 110(1):177–189, 2003 January.

    Google Scholar 

  68. Yano, T., Fukukita, H., Uneo, S., and Fukomoto, A., 40 MHz. ultrasound diagnostic system for: Dermatologic examination. IEEE Ultrasonics Symposium Proc. 2:875–878, 1987.

    Google Scholar 

  69. Wegener, O. H., Whole-body computed tomography. Blackwell Pub, 2007.

  70. Zungwill, L. M., William, J., and Berry, C. C., A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve layer damage in glaucoma. Ophthalmology 107:1309–1315, 2000.

    Article  Google Scholar 

  71. Zangwill, L., Shakiba, S., and Caprioli, J., Agreement between clinicians and a confocal scanning laser ophthalmoscope in estimating cup/disk ratios. Am. J. Ophthalmol. 119:415–421, 1995.

    Google Scholar 

  72. Zangwill, L., Irak, I., Berry, C. C., Garden, V., de Souza, L. M., and Weinreb, R. N., Effect of cataract and pupil size on image quality with confocal scanning laser ophthalmoscopy. Arch. Ophthalmol. 115(8):983–999, 1997.

    Google Scholar 

  73. Zangwill, L. M., Van Horn, S., and De Souza, L. M., Optic nerve head topography in ocular hypertensive eyes using confocal scanning laser ophthalmoscopy. Am. J. Ophthalmol. 122:520–525, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Acharya U.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya U, R., Yun, W.L., Ng, E.Y.K. et al. Imaging Systems of Human Eye: A Review. J Med Syst 32, 301–315 (2008). https://doi.org/10.1007/s10916-008-9135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9135-y

Keywords

Navigation