[go: up one dir, main page]

Skip to main content
Log in

A Moment-Based Hermite WENO Scheme with Unified Stencils for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a fifth-order moment-based Hermite weighted essentially non-oscillatory scheme with unified stencils (termed as HWENO-U) is proposed for hyperbolic conservation laws. The main idea of the HWENO-U scheme is to modify the first-order moment by a HWENO limiter only in the time discretizations using the same information of spatial reconstructions, in which the limiter not only overcomes spurious oscillations well, but also ensures the stability of the fully-discrete scheme proved by the von-Neumann analysis. Benefited by this new framework, the HWENO-U scheme involves only a single HWENO reconstruction throughout the entire spatial discretizations, while previous HWENO schemes have to bring additional procedures. Meanwhile, the HWENO-U scheme can use the artificial linear positive weights (the sum is one), but a normalization is made for the original definition of non-linear weights to achieve scale-invariance, which can reduce problem-specific dependencies especially for simulating the problems with sharp scale variations. Compared with previous HWENO schemes, the HWENO-U scheme is simpler and more efficient for utilizing the same candidate stencils, reconstructed polynomials, and nonlinear weights both in the limiter and the spatial reconstruction. Besides, the HWENO-U scheme has more compact stencils, higher resolutions near discontinuities, and smaller numerical errors in smooth regions than a fifth-order WENO scheme with the same framework. Extensive numerical tests are carried out to validate the efficiency, robustness, accuracy, and resolution of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Cai, C., Qiu, J., Wu, K.: Provably convergent Newton-Raphson methods for recovering primitive variables with applications to physical-constraint-preserving Hermite WENO schemes for relativistic hydrodynamics. J. Comput. Phys. 498, 112669 (2024)

    MathSciNet  MATH  Google Scholar 

  3. Cai, X., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume HWENO schemes for compressible Euler equations. J. Sci. Comput. 68, 464–483 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Wu, K.: A physical-constraint-preserving finite volume WENO method for special relativistic hydrodynamics on unstructured meshes. J. Comput. Phys. 466, 111398 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Costa, B., Don, W.S.: Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws. J. Comput. Phys. 224, 970–991 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209–8253 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Don, W.S., Li, R., Wang, B.-S., Wang, Y.: A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 448, 110724 (2022)

    MathSciNet  MATH  Google Scholar 

  10. Fan, C., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume hybrid Hermite WENO scheme for compressible Navier-Stokes equations. J. Comput. Phys. 445, 110596 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Fan, C., Zhao, Z., Xiong, T., Qiu, J.: A robust fifth order finite difference Hermite WENO scheme for compressible Euler equations. Comput. Methods Appl. Mech. Engrg. 412, 116077 (2023)

    MathSciNet  MATH  Google Scholar 

  12. Gardner, C.L., Dwyer, S.J.: Numerical simulation of the xz tauri supersonic astrophysical jet. Acta Math. Sci. 29, 1677–1683 (2009)

    MATH  Google Scholar 

  13. Ha, Y., Gardner, C.L.: Positive scheme numerical simulation of high Mach number astrophysical jets. J. Sci. Comput. 34, 247–259 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Ha, Y., Gardner, C.L., Gelb, A., Shu, C.-W.: Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput. 24, 29–44 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Harten, A.: Preliminary results on the extension of ENO schemes to two-dimensional problems, in Proceedings, International Conference on Nonlinear Hyperbolic Problems, Saint-Etienne, 1986, Lecture Notes in Mathematics, edited by C. Carasso et al. (Springer-Verlag, Berlin, 1987)

  16. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–323 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes, IMRC Technical Summary Rept. 2823, Univ. of Wisconsin, Madison, WI, May (1985)

  18. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Huang, J., Shu, C.-W.: Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Korobeinikov, V. P.: Problems of point blast theory, American Institute of Physics, College Park, (1991).

  22. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    MathSciNet  MATH  Google Scholar 

  23. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. Math. Model. Numer. Anal. 33, 547–571 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Li, J., Shu, C.-W., Qiu, J.: Multi-resolution HWENO schemes for hyperbolic conservation laws. J. Comput. Phys. 446, 110653 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Li, J., Shu, C.-W., Qiu, J.: Moment-based multi-resolution HWENO scheme for hyperbolic conservation laws, Commun. Comput. Phys. 32, 364–400 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Linde, T., Roe, P.: Robust Euler codes, AIAA paper-97-2098, In: 13th Computational Fluid Dynamics Conference, Snowmass Village, CO, (1997).

  27. Liu, Y., Lu, J., Shu, C.-W.: An essentially oscillation-free discontinuous Galerkin method for hyperbolic systems. SIAM J. Sci. Comput. 44, A230–A259 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    MathSciNet  MATH  Google Scholar 

  29. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for conservation laws. J. Sci. Comput. 63, 548–572 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Lu, J., Liu, Y., Shu, C.-W.: An oscillation-free discontinuous Galerkin method for scalar hyperbolic conservation laws. SIAM J. Numer. Anal. 59, 1299–1324 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Luo, H., Baum, J.D., Lohner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Computat. Phys. 225, 686–713 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case. Comput. Fluid. 34, 642–663 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Sedov, L.I.: Similarity and dimensional methods in mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  35. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, CIME subseries, Springer, Berlin (1998)

    MATH  Google Scholar 

  36. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numerica 29, 701–762 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Strikwerda, J. C.: Finite difference schemes and partial differential equations, Society for Industrial and Applied Mathematics, (2004)

  38. Tao, Z., Li, F., Qiu, J.: High-order central Hermite WENO schemes: dimension-by-dimension moment-based reconstructions. J. Comput. Phys. 318, 222–251 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Wibisono, I., Engkos, A.K.: Fifth-order Hermite targeted essentially non-oscillatory schemes for hyperbolic conservation laws. J. Sci. Comput. 87, 1–23 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    MathSciNet  MATH  Google Scholar 

  41. Zahran, Y.H., Abdalla, A.H.: Seventh order Hermite WENO scheme for hyperbolic conservation laws. Comput. Fluid. 131, 66–80 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, Y.-T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes, Commun. Comput. Phys. 5, 836–848 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, M., Zhao, Z.: A fifth-order finite difference HWENO scheme combined with limiter for hyperbolic conservation laws. J. Comput. Phys. 472, 11676 (2023)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, Z., Chen, Y., Qiu, J.: A hybrid Hermite WENO method for hyperbolic conservation laws. J. Comput. Phys. 405, 109175 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Zhao, Z., Qiu, J.: A Hermite WENO scheme with artificial linear weights for hyperbolic conservation laws. J. Comput. Phys. 417, 109583 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, Z., Qiu, J.: An oscillation-free Hermite WENO scheme for hyperbolic conservation laws. Sci. China Math. 67, 431–454 (2024)

    MathSciNet  MATH  Google Scholar 

  48. Zhong, X., Shu, C.-W.: A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 232, 397–415 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Zhu, J., Qiu, J.: A class of fourth order finite volume Hermite weighted essentially non-oscillatory schemes. Sci. China Ser. A Math. 51, 1549–1560 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Zhu, J., Qiu, J.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73, 1–22 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Zhu, J., Qiu, J.: A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes. J. Comput. Phys. 349, 220–232 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Zhu, J., Qiu, J.: New finite volume weighted essentially non-oscillatory schemes on triangular meshes. SIAM J. Sci. Comput. 40, A903–A928 (2018)

    MATH  Google Scholar 

  54. Zhu, J., Qiu, J., Shu, C.-W.: High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters. J. Comput. Phys. 404, 109105 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was partially supported by National Key R &D Program of China [Grant Number 2022YFA1004500], National Natural Science Foundation of China [Grant Number 12401541, 12471390], Postdoctoral Science Foundation of China [Grant Number 2024M751284], and Fundamental Research Funds for the Central Universities [Grant Number 20720240132].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuang Zhao.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was partially supported by National Key R & D Program of China [Grant Number 2022YFA1004500], National Natural Science Foundation of China [Grant Number 12401541, 12471390], Postdoctoral Science Foundation of China [Grant Number 2024M751284], and Fundamental Research Funds for the Central Universities [Grant Number 20720240132].

Appendix

Appendix

In the one-dimensional case, the coefficients of the reconstructed polynomials \(\{p_m(x)\}^2_{m=0}\) in (2.9) are given as follows:

$$\begin{aligned} {\left\{ \begin{array}{ll} c_{0,0}= -{\frac{43\,\bar{u}_{i-1}}{384}}+{\frac{235\,\bar{u}_{i}}{192}}-{\frac{43\,\bar{u}_{i+1}}{384}}-{\frac{27\,\bar{v}_{i-1}}{64}}+{\frac{27\,\bar{v}_{i+1}}{64}},\\ c_{0,1}= -{\frac{63\,\bar{u}_{i-1}}{76}}+{\frac{63\,\bar{u}_{i+1}}{76}}-{\frac{75\,\bar{v}_{i-1}}{19}}-{\frac{75\,\bar{v}_{i+1}}{19}},\\ c_{0,2}= {\frac{23\,\bar{u}_{i-1}}{16}}-{\frac{23\,\bar{u}_{i}}{8}}+{\frac{23\,\bar{u}_{i+1}}{16}}+{\frac{45\,\bar{v}_{i-1}}{8}}-{\frac{45\,\bar{v}_{i+1}}{8}},\\ c_{0,3}= {\frac{5\,\bar{u}_{i-1}}{19}}-{\frac{5\,\bar{u}_{i+1}}{19}}+{\frac{60\,\bar{v}_{i-1}}{19}}+{\frac{60\,\bar{v}_{i+1}}{19}},\\ c_{0,4}= -\frac{5\,\bar{u}_{i-1}}{8}+\frac{5\,\bar{u}_{i}}{4}-\frac{5\,\bar{u}_{i+1}}{8}-{\frac{15\,\bar{v}_{i-1}}{4}}+{\frac{15\,\bar{v}_{i+1}}{4}};\\ c_{1,0}= \bar{u}_{i},\ c_{1,1}= \bar{u}_{i}-\bar{u}_{i-1};\\ c_{2,0}= \bar{u}_{i},\ c_{2,1}= \bar{u}_{i+1}-\bar{u}_{i}. \end{array}\right. } \end{aligned}$$

In the two-dimensional case, the coefficients of the reconstructed polynomials \(\{p_m(x,y)\}^4_{m=0}\) in (2.20) are given as follows:

$$\begin{aligned} {\left\{ \begin{array}{ll} c_{0,0} = {\frac{{\bar{{u}}_1}}{576}}-{\frac{133\,{\bar{{u}}_2}}{1152}}+{\frac{{\bar{{u}}_3} }{576}}-{\frac{133\,{\bar{{u}}_4}}{1152}}+{\frac{419\,{\bar{{u}}_5}}{288}}-{ \frac{133\,{\bar{{u}}_6}}{1152}}+{\frac{{\bar{{u}}_7}}{576}}-{\frac{133\,{ \bar{{u}}_8}}{1152}}+{\frac{{\bar{{u}}_9}}{576}}-{\frac{27\,{\bar{{v}}_4}}{64}}\\ \quad \quad \,\, +{ \frac{27\,{\bar{{v}}_6}}{64}}-{\frac{27\,{\bar{{w}}_2}}{64}}+{\frac{27\,{\bar{{w}}_8}}{64}}, \\ c_{0,1} =\frac{\bar{{u}}_1}{48}-\frac{\bar{{u}}_3}{48}-{\frac{397\,{\bar{{u}}_4}}{456}}+{\frac{397\,{ \bar{{u}}_6}}{456}}+\frac{\bar{{u}}_7}{48}-\frac{\bar{{u}}_9}{48}-{\frac{75\,{\bar{{v}}_4}}{19}}-{ \frac{75\,{\bar{{v}}_6}}{19}} , \\ c_{0,2} = \frac{\bar{{u}}_1}{48} - \frac{397\,{\bar{{u}}_2}}{456} +\frac{\bar{{u}}_3}{48}-\frac{\bar{{u}}_7}{48}+{ \frac{397\,{\bar{{u}}_8}}{456}}-\frac{\bar{{u}}_9}{48}-{\frac{75\,{\bar{{w}}_2}}{19}}-{ \frac{75\,{\bar{{w}}_8}}{19}} , \\ c_{0,3} = -\frac{\bar{{u}}_1}{48}+\frac{\bar{{u}}_2}{24}-\frac{\bar{{u}}_3}{48}+{\frac{71\,{\bar{{u}}_4}}{48}}-{ \frac{71\,{\bar{{u}}_5}}{24}}+{\frac{71\,{\bar{{u}}_6}}{48}}-\frac{\bar{{u}}_7}{48}+\frac{\bar{{u}}_8}{24} -\frac{\bar{{u}}_9}{48}+{\frac{45\,{\bar{{v}}_4}}{8}}-{\frac{45\,{\bar{{v}}_6}}{8}} , \\ c_{0,4} = -{\frac{7\,{\bar{{u}}_1}}{22}}+{\frac{7\,{\bar{{u}}_3}}{22}}+{\frac{7\,{\bar{{u}}_7}}{22}}-{\frac{7\,{\bar{{u}}_9}}{22}}-{\frac{75\,{\bar{{v}}_2}}{11}}+{\frac{75\,{\bar{{v}}_8}}{11}}-{\frac{75\,{\bar{{w}}_4}}{11}}+{\frac{75\,{\bar{{w}}_6}}{ 11}} , \\ c_{0,5} = -\frac{\bar{{u}}_1}{48}+{\frac{71\,{\bar{{u}}_2}}{48}}-\frac{\bar{{u}}_3}{48}+\frac{\bar{{u}}_4}{24}-{ \frac{71\,{\bar{{u}}_5}}{24}}+\frac{\bar{{u}}_6}{24}-\frac{\bar{{u}}_7}{48}+{\frac{71\,{\bar{{u}}_8} }{48}}-\frac{\bar{{u}}_9}{48}+{\frac{45\,{\bar{{w}}_2}}{8}}-{\frac{45\,{\bar{{w}}_8}}{8}} , \\ c_{0,6} = {\frac{5\,{\bar{{u}}_4}}{19}}-{\frac{5\,{\bar{{u}}_6}}{19}}+{\frac{60\,{\bar{{v}}_4}}{19}}+{\frac{60\,{\bar{{v}}_6}}{19}} , \\ c_{0,7} = -\frac{\bar{{u}}_1}{4}+\frac{\bar{{u}}_2}{2}-\frac{\bar{{u}}_3}{4}+\frac{\bar{{u}}_7}{4}-\frac{\bar{{u}}_8}{2}+\frac{\bar{{u}}_9}{4} , \\ c_{0,8} = -\frac{\bar{{u}}_1}{4}+\frac{\bar{{u}}_3}{4}+\frac{\bar{{u}}_4}{2}-\frac{\bar{{u}}_6}{2}-\frac{\bar{{u}}_7}{4}+\frac{\bar{{u}}_9}{4} , \\ c_{0,9} = {\frac{5\,{\bar{{u}}_2}}{19}}-{\frac{5\,{\bar{{u}}_8}}{19}}+{\frac{60\,{\bar{{w}}_2}}{19}}+{\frac{60\,{\bar{{w}}_8}}{19}} , \\ c_{0,10} = -\frac{5\,{\bar{{u}}_4}}{8}+\frac{5\,{\bar{{u}}_5}}{4}-\frac{5\,{\bar{{u}}_6}}{8}-{\frac{15\,{\bar{{v}}_4}}{4}}+{ \frac{15\,{\bar{{v}}_6}}{4}} , \\ c_{0,11} = {\frac{5\,{\bar{{u}}_1}}{22}}-{\frac{5\,{\bar{{u}}_3}}{22}}-{\frac{5\,{\bar{{u}}_7 }}{22}}+{\frac{5\,{\bar{{u}}_9}}{22}}+{\frac{60\,{\bar{{v}}_2}}{11}}-{\frac{ 60\,{\bar{{v}}_8}}{11}} , \\ c_{0,12} = \frac{\bar{{u}}_1}{4}-\frac{\bar{{u}}_2}{2}+\frac{\bar{{u}}_3}{4}-\frac{\bar{{u}}_4}{2}+{\bar{{u}}_5}-\frac{\bar{{u}}_6}{2}+\frac{\bar{{u}}_7}{4}-\frac{\bar{{u}}_8}{2}+\frac{\bar{{u}}_9}{4} , \\ c_{0,13} ={\frac{5\,{\bar{{u}}_1}}{22}}-{\frac{5\,{\bar{{u}}_3}}{22}}-{\frac{5\,{\bar{{u}}_7 }}{22}}+{\frac{5\,{\bar{{u}}_9}}{22}}+{\frac{60\,{\bar{{w}}_4}}{11}}-{\frac{ 60\,{\bar{{w}}_6}}{11}} , \\ c_{0,14} = -\frac{5\,{\bar{{u}}_2}}{8}+\frac{5\,{\bar{{u}}_5}}{4}-\frac{5\,{\bar{{u}}_8}}{8}-{\frac{15\,{\bar{{w}}_2}}{4}}+{ \frac{15\,{\bar{{w}}_8}}{4}}; \\ c_{1,0}={\bar{{u}}_5}, \ c_{1,1}={\bar{{u}}_5}-{\bar{{u}}_4}, \ c_{1,2}={\bar{{u}}_5}-{\bar{{u}}_2};\\ c_{2,0}={\bar{{u}}_5},\ c_{2,1}={\bar{{u}}_6}-{\bar{{u}}_5},\ c_{2,2}={\bar{{u}}_5}-{\bar{{u}}_2};\\ c_{3,0}={\bar{{u}}_5},\ c_{3,1}={\bar{{u}}_5}-{\bar{{u}}_4},\ c_{3,2}={\bar{{u}}_8}-{\bar{{u}}_5};\\ c_{4,0}={\bar{{u}}_5},\ c_{4,1}={\bar{{u}}_6}-{\bar{{u}}_5},\ c_{4,2}={\bar{{u}}_8}-{\bar{{u}}_5}.\\ \end{array}\right. } \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Qiu, J. & Zhao, Z. A Moment-Based Hermite WENO Scheme with Unified Stencils for Hyperbolic Conservation Laws. J Sci Comput 102, 9 (2025). https://doi.org/10.1007/s10915-024-02732-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02732-w

Keywords

Mathematics Subject Classification

Navigation