Abstract
In this work, the immersed boundary method with time filter and scalar auxiliary variable techniques is studied to solve the fluid–structure interaction problems. For the fluid flow, we first use the backward Euler differentiation formula in temporal discretization, we then employ the time filter technique to improve its convergence order, the scalar auxiliary variable strategy is visited to decouple the fluid equations and achieve fast solutions. We adopt the immersed boundary method to build the connection between the fluid and the structure, as well as characterize the deformations of the structure. We approximate the fluid–structure interaction model by the finite element method in space. The semi-discrete and fully-discrete implicit numerical schemes are proposed followed with unconditionally stability properties. We carry out several numerical experiments to validate the convergence behaviors and efficiency of the algorithms.









Similar content being viewed by others
Data Availability
The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.
References
Alnaes, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C. Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS Project Version 1.5, Archive of Numerical Software, 3 (2015)
Boffi, D., Cavallini, N., Gastaldi, L.: The finite element immersed boundary method with distributed Lagrange multiplier. SIAM J. Numer. Anal. 53(6), 2584–2604 (2015)
Boffi, D., Gastaldi, L.: A finite element approach for the immersed boundary method. Comput. Struct. 81(8–11), 491–501 (2003)
Boffi, D., Gastaldi, L.: A fictitious domain approach with Lagrange multiplier for fluid-structure interactions. Numer. Math. 135(3), 711–732 (2017)
Boffi, D., Gastaldi, L.: Discrete models for fluid-structure interactions: the finite element immersed boundary method. Discrete Contin. Dyn. Syst. Ser. S 9(1), 89–107 (2016)
Boffi, D., Gastaldi, L.: Existence, uniqueness, and approximation of a fictitious domain formulation for fluid-structure interactions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33(1), 109–137 (2022)
Boffi, D., Gastaldi, L., Heltai, L.: Stability results and algorithmic strategies for the finite element approach to the immersed boundary method, in: Bermudez de Castro, A., Gomez, D., Quintela, P., Salgado, P. (Eds.), Proceedings of ENUMATH 2005 the European Conference on Numerical Mathematics and Advanced Applications, (2006) 557-566
Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method. Math. Models Methods Appl. Sci. 17(10), 1479–1505 (2007)
Boffi, D., Gastaldi, L., Heltai, L.: On the CFL condition for the finite element immersed boundary method. Comput. Struct. 85(11–14), 775–783 (2007)
Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.S.: On the hyper-elastic formulation of the immersed boundary method. Comput. Meth. Appl. Mech. Engrg. 197(25–28), 2210–2231 (2008)
Borazjani, I., Ge, L., Sotiropoulos, F.: High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Annu. Biomed. Engrg. 38(2), 326–344 (2010)
Bratanow, T.: Finite element approximations of the Navier-Stokes equations. Appl. Math. Model. 5(3), 212–213 (1981)
DeCaria, V., Gottlieb, S., Grant, Z.J., Layton, W.J.: A general linear method approach to the design and optimization of efficient, accurate, and easily implemented time-stepping methods in CFD. J. Comput. Phys. 455, 110927 (2022)
DeCaria, V., Guzel, A., Layton, W., Li, Y.: A variable stepsize, variable order family of low complexity. SIAM J. Sci. Comput. 43(3), A2130–A2160 (2021)
DeCaria, V., Layton, W., McLaughlin, M.: A conservative, second order, unconditionally stable artificial compression method. Comput. Methods Appl. Mech. Engrg. 325, 733–747 (2017)
DeCaria, V., Layton, W., McLaughlin, M.: An analysis of the Robert-Asselin time filter for the correction of nonphysical acoustics in an artificial compression method. Numer. Methods Partial Differ. Equ. 35(3), 916–935 (2019)
DeCaria, V., Layton, W., Zhao, H.: A time-accurate, adaptive discretization for fluid flow problems. Int. J. Numer. Anal. Model. 17(2), 254–280 (2020)
DeCaria, V., Schneier, M.: An embedded variable step IMEX scheme for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 376, 113661 (2021)
Devendran, D., Peksin, C.S.: An energy-based immersed boundary method for incompressible viscoelasticity. J. Comput. Phys. 231(14), 4613–4642 (2012)
Girault, V., Raviar, P.A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin (1986)
Glowinski, R.: Finite element methods for incompressible viscous flow. Handb. Numer. Anal. 9, 3–1176 (2003)
Griffith, B.E., Luo, X.Y.: Hybrid Finite difference/finite element immersed boundary method. Int. J. Numer. Methods Biomed. Engrg. 33(12), e2888 (2017)
Griffith, B.E., Luo, X.Y., McQueen, D.M., Peskin, C.S.: Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1(1), 137–177 (2009)
Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S.: Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)
Guzel, A.B., Layton, W.J.: Time filters increase accuracy of the fully implicit method. BIT Numer. Math. 58, 301–315 (2018)
Heltai, L., Costanzo, F.: Variational implementation of immersed finite element methods. Comput. Meth. Appl. Mech. Engrg. 229, 110–127 (2012)
Heywood, J.G., Rannacher, R.: Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)
Jain, A., Jones, N.: Coupled flutter and buffeting analysis of long-span bridges. J. Struct. Engrg. 122(7), 716–725 (1996)
Jones, S.K., Laurenza, R., Hedrick, T.L., Griffith, B.E., Miller, L.A.: Lift vs. drag based mechanisms for vertical force production in the smallest flying insects. J. Theor. Biol. 384, 105–120 (2015)
Knoll, D., Keyes, D.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)
Layton, W., Li, Y., Trenchea, C.: Recent developments in IMEX methods with time filters for systems of evolution equations. J. Comput. Appl. Math. 299, 50–67 (2016)
Lemmon, J.D., Yoganathan, A.P.: Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. J. Biomech. Engrg. 122(2), 109–117 (2000)
Lemmon, J.D., Yoganathan, A.P.: Computational modeling of left heart diastolic function: examination of ventricular dysfunction. J. Biomech. Engrg. 122(4), 297–303 (2000)
Li, X.L., Shen, J.: Error analysis of the SAV-MAC scheme for the Navier-Stokes equations. SIAM J. Numer. Anal. 58(5), 2465–2491 (2020)
Li, X.L., Shen, J., Liu, Z.G.: New SAV-pressure correction methods for the Navier-Stokes equations: stability and error analysis. Math. Comput. 91(333), 141–167 (2021)
Li, N., Wu, J.L., Feng, X.L.: Filtered time-stepping method for incompressible Navier-Stokes equations with variable density. J. Comput. Phys. 473, 111764 (2023)
Lin, L., Yang, Z., Dong, S.: Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable. J. Comput. Phys. 388, 1–22 (2019)
Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book, Springer, Berlin, Heidelberg (2012)
McQueen, D.M., Peskin, C.S.: Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J. Supercomput. 11(3), 213–236 (1997)
McQueen, D.M., Peskin, C.S.: A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34(1), 56–60 (2000)
Miller, L.A., Peskin, C.S.: When vortices stick: an aerodynamic transition in tiny insect flight. J. Exp. Biol. 207(17), 3073–3088 (2004)
Miller, L.A., Peskin, C.S.: Flexible clap and fling in tiny insect flight. J. Exp. Biol. 212(19), 3076–3090 (2009)
Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)
Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)
Peskin, C.S.: The immersed boundary method. Acta Numer 11, 479–517 (2002)
Qin, Y., Wang, Y.S., Li, J.: A variable time step time filter algorithm for the geothermal system. SIAM J. Numer. Anal. 60(5), 2781–2806 (2022)
Quarteroni, A., Formaggia, L.: Mathematical Modelling and Numerical Simulation of the Cardiovascular System, Handbook of Numerical. Analysis 12, 3–127 (2004)
Quarteroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26, 365–590 (2017)
Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math. Comput. 65(215), 1039–1066 (1996)
Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)
Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)
Sotiropoulos, F., Borazjani, I.: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Engrg. Comput. 47(3), 245–256 (2009)
Stockie, J.M., Wetton, B.R.: Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes. J. Comput. Phys. 154(1), 41–64 (1999)
Stockie, J.M., Wetton, B.T.R.: Stability analysis for the immersed fiber problem. SIAM J. Appl. Math. 55(6), 1577–1591 (1995)
Suli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53(4), 459–483 (1988)
Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, (2001)
Tian, F.B., Luo, H., Zhu, L., Liao, J.C., Lu, X.Y.: An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J. Comput. Phys. 230(19), 7266–7283 (2011)
Tu, C., Peskin, C.S.: Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods. SIAM J. Sci. Stat. Comput. 13(6), 1361–1376 (2004)
Wang, X., Wang, C., Zhang, L.T.: Semi-implicit formulation of the immersed finite element method. Comput. Mech. 49(4), 421–430 (2012)
Wang, X., Zhang, L.T.: Interpolation functions in the immersed boundary and finite element methods. Comput. Mech. 45(4), 321–334 (2010)
Yagawa, G., Eguchi, Y.: Finite element methods for incompressible viscous flow. JSME Int. J. 30(265), 1009–1017 (2008)
Yang, J., Agrawal, A., Samali, B.: Benchmark problem for response control of wind-excited tall buildings. J. Engrg. Mech. 130(4), 437–446 (2004)
Zeng, Y., Huang, P., He, Y.: A time filter method for solving the double-diffusive natural convection model. Comput. Fluids 235, 105265 (2022)
Zhang, L.T., Gay, M.: Immersed finite element method for fluid-structure interactions. J. Fluid. Struct. 23(6), 839–857 (2007)
Zhao, H., Freund, J.B., Moser, R.D.: A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J. Comput. Phys. 227(6), 3114–3140 (2008)
Funding
This work is supported by National Natural Science Foundation of China (Grant Nos. 12271440, 12371407) and the Fundamental Research Funds for the Central Universities of ChinaGrant No. D5000230046.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors have not disclosed any conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported by National Natural Science Foundation of China (Grant Nos. 12271440, 12371407) and the Fundamental Research Funds for the Central Universities of China–Grant No. D5000230046.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, Q., Cai, L., Jing, F. et al. On the Immersed Boundary Method with Time-Filter-SAV for Solving Fluid–Structure Interaction Problem. J Sci Comput 100, 45 (2024). https://doi.org/10.1007/s10915-024-02591-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02591-5