[go: up one dir, main page]

Skip to main content
Log in

On the Immersed Boundary Method with Time-Filter-SAV for Solving Fluid–Structure Interaction Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, the immersed boundary method with time filter and scalar auxiliary variable techniques is studied to solve the fluid–structure interaction problems. For the fluid flow, we first use the backward Euler differentiation formula in temporal discretization, we then employ the time filter technique to improve its convergence order, the scalar auxiliary variable strategy is visited to decouple the fluid equations and achieve fast solutions. We adopt the immersed boundary method to build the connection between the fluid and the structure, as well as characterize the deformations of the structure. We approximate the fluid–structure interaction model by the finite element method in space. The semi-discrete and fully-discrete implicit numerical schemes are proposed followed with unconditionally stability properties. We carry out several numerical experiments to validate the convergence behaviors and efficiency of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Alnaes, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C. Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS Project Version 1.5, Archive of Numerical Software, 3 (2015)

  2. Boffi, D., Cavallini, N., Gastaldi, L.: The finite element immersed boundary method with distributed Lagrange multiplier. SIAM J. Numer. Anal. 53(6), 2584–2604 (2015)

    MathSciNet  Google Scholar 

  3. Boffi, D., Gastaldi, L.: A finite element approach for the immersed boundary method. Comput. Struct. 81(8–11), 491–501 (2003)

    MathSciNet  Google Scholar 

  4. Boffi, D., Gastaldi, L.: A fictitious domain approach with Lagrange multiplier for fluid-structure interactions. Numer. Math. 135(3), 711–732 (2017)

    MathSciNet  Google Scholar 

  5. Boffi, D., Gastaldi, L.: Discrete models for fluid-structure interactions: the finite element immersed boundary method. Discrete Contin. Dyn. Syst. Ser. S 9(1), 89–107 (2016)

    MathSciNet  Google Scholar 

  6. Boffi, D., Gastaldi, L.: Existence, uniqueness, and approximation of a fictitious domain formulation for fluid-structure interactions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33(1), 109–137 (2022)

    MathSciNet  Google Scholar 

  7. Boffi, D., Gastaldi, L., Heltai, L.: Stability results and algorithmic strategies for the finite element approach to the immersed boundary method, in: Bermudez de Castro, A., Gomez, D., Quintela, P., Salgado, P. (Eds.), Proceedings of ENUMATH 2005 the European Conference on Numerical Mathematics and Advanced Applications, (2006) 557-566

  8. Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method. Math. Models Methods Appl. Sci. 17(10), 1479–1505 (2007)

    MathSciNet  Google Scholar 

  9. Boffi, D., Gastaldi, L., Heltai, L.: On the CFL condition for the finite element immersed boundary method. Comput. Struct. 85(11–14), 775–783 (2007)

    MathSciNet  Google Scholar 

  10. Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.S.: On the hyper-elastic formulation of the immersed boundary method. Comput. Meth. Appl. Mech. Engrg. 197(25–28), 2210–2231 (2008)

    MathSciNet  Google Scholar 

  11. Borazjani, I., Ge, L., Sotiropoulos, F.: High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Annu. Biomed. Engrg. 38(2), 326–344 (2010)

    Google Scholar 

  12. Bratanow, T.: Finite element approximations of the Navier-Stokes equations. Appl. Math. Model. 5(3), 212–213 (1981)

    Google Scholar 

  13. DeCaria, V., Gottlieb, S., Grant, Z.J., Layton, W.J.: A general linear method approach to the design and optimization of efficient, accurate, and easily implemented time-stepping methods in CFD. J. Comput. Phys. 455, 110927 (2022)

    MathSciNet  Google Scholar 

  14. DeCaria, V., Guzel, A., Layton, W., Li, Y.: A variable stepsize, variable order family of low complexity. SIAM J. Sci. Comput. 43(3), A2130–A2160 (2021)

    MathSciNet  Google Scholar 

  15. DeCaria, V., Layton, W., McLaughlin, M.: A conservative, second order, unconditionally stable artificial compression method. Comput. Methods Appl. Mech. Engrg. 325, 733–747 (2017)

    MathSciNet  Google Scholar 

  16. DeCaria, V., Layton, W., McLaughlin, M.: An analysis of the Robert-Asselin time filter for the correction of nonphysical acoustics in an artificial compression method. Numer. Methods Partial Differ. Equ. 35(3), 916–935 (2019)

    MathSciNet  Google Scholar 

  17. DeCaria, V., Layton, W., Zhao, H.: A time-accurate, adaptive discretization for fluid flow problems. Int. J. Numer. Anal. Model. 17(2), 254–280 (2020)

    MathSciNet  Google Scholar 

  18. DeCaria, V., Schneier, M.: An embedded variable step IMEX scheme for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 376, 113661 (2021)

    MathSciNet  Google Scholar 

  19. Devendran, D., Peksin, C.S.: An energy-based immersed boundary method for incompressible viscoelasticity. J. Comput. Phys. 231(14), 4613–4642 (2012)

    MathSciNet  Google Scholar 

  20. Girault, V., Raviar, P.A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin (1986)

    Google Scholar 

  21. Glowinski, R.: Finite element methods for incompressible viscous flow. Handb. Numer. Anal. 9, 3–1176 (2003)

    MathSciNet  Google Scholar 

  22. Griffith, B.E., Luo, X.Y.: Hybrid Finite difference/finite element immersed boundary method. Int. J. Numer. Methods Biomed. Engrg. 33(12), e2888 (2017)

    MathSciNet  Google Scholar 

  23. Griffith, B.E., Luo, X.Y., McQueen, D.M., Peskin, C.S.: Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1(1), 137–177 (2009)

    Google Scholar 

  24. Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S.: Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)

    MathSciNet  Google Scholar 

  25. Guzel, A.B., Layton, W.J.: Time filters increase accuracy of the fully implicit method. BIT Numer. Math. 58, 301–315 (2018)

    MathSciNet  Google Scholar 

  26. Heltai, L., Costanzo, F.: Variational implementation of immersed finite element methods. Comput. Meth. Appl. Mech. Engrg. 229, 110–127 (2012)

    MathSciNet  Google Scholar 

  27. Heywood, J.G., Rannacher, R.: Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    MathSciNet  Google Scholar 

  28. Jain, A., Jones, N.: Coupled flutter and buffeting analysis of long-span bridges. J. Struct. Engrg. 122(7), 716–725 (1996)

    Google Scholar 

  29. Jones, S.K., Laurenza, R., Hedrick, T.L., Griffith, B.E., Miller, L.A.: Lift vs. drag based mechanisms for vertical force production in the smallest flying insects. J. Theor. Biol. 384, 105–120 (2015)

    Google Scholar 

  30. Knoll, D., Keyes, D.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)

    MathSciNet  Google Scholar 

  31. Layton, W., Li, Y., Trenchea, C.: Recent developments in IMEX methods with time filters for systems of evolution equations. J. Comput. Appl. Math. 299, 50–67 (2016)

    MathSciNet  Google Scholar 

  32. Lemmon, J.D., Yoganathan, A.P.: Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. J. Biomech. Engrg. 122(2), 109–117 (2000)

    Google Scholar 

  33. Lemmon, J.D., Yoganathan, A.P.: Computational modeling of left heart diastolic function: examination of ventricular dysfunction. J. Biomech. Engrg. 122(4), 297–303 (2000)

    Google Scholar 

  34. Li, X.L., Shen, J.: Error analysis of the SAV-MAC scheme for the Navier-Stokes equations. SIAM J. Numer. Anal. 58(5), 2465–2491 (2020)

    MathSciNet  Google Scholar 

  35. Li, X.L., Shen, J., Liu, Z.G.: New SAV-pressure correction methods for the Navier-Stokes equations: stability and error analysis. Math. Comput. 91(333), 141–167 (2021)

    MathSciNet  Google Scholar 

  36. Li, N., Wu, J.L., Feng, X.L.: Filtered time-stepping method for incompressible Navier-Stokes equations with variable density. J. Comput. Phys. 473, 111764 (2023)

    MathSciNet  Google Scholar 

  37. Lin, L., Yang, Z., Dong, S.: Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable. J. Comput. Phys. 388, 1–22 (2019)

    MathSciNet  Google Scholar 

  38. Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book, Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  39. McQueen, D.M., Peskin, C.S.: Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J. Supercomput. 11(3), 213–236 (1997)

    Google Scholar 

  40. McQueen, D.M., Peskin, C.S.: A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34(1), 56–60 (2000)

    Google Scholar 

  41. Miller, L.A., Peskin, C.S.: When vortices stick: an aerodynamic transition in tiny insect flight. J. Exp. Biol. 207(17), 3073–3088 (2004)

    Google Scholar 

  42. Miller, L.A., Peskin, C.S.: Flexible clap and fling in tiny insect flight. J. Exp. Biol. 212(19), 3076–3090 (2009)

    Google Scholar 

  43. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    MathSciNet  Google Scholar 

  44. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977)

    MathSciNet  Google Scholar 

  45. Peskin, C.S.: The immersed boundary method. Acta Numer 11, 479–517 (2002)

    MathSciNet  Google Scholar 

  46. Qin, Y., Wang, Y.S., Li, J.: A variable time step time filter algorithm for the geothermal system. SIAM J. Numer. Anal. 60(5), 2781–2806 (2022)

    MathSciNet  Google Scholar 

  47. Quarteroni, A., Formaggia, L.: Mathematical Modelling and Numerical Simulation of the Cardiovascular System, Handbook of Numerical. Analysis 12, 3–127 (2004)

    Google Scholar 

  48. Quarteroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26, 365–590 (2017)

    MathSciNet  Google Scholar 

  49. Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes. Math. Comput. 65(215), 1039–1066 (1996)

    MathSciNet  Google Scholar 

  50. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  Google Scholar 

  51. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    MathSciNet  Google Scholar 

  52. Sotiropoulos, F., Borazjani, I.: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Engrg. Comput. 47(3), 245–256 (2009)

    Google Scholar 

  53. Stockie, J.M., Wetton, B.R.: Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes. J. Comput. Phys. 154(1), 41–64 (1999)

    Google Scholar 

  54. Stockie, J.M., Wetton, B.T.R.: Stability analysis for the immersed fiber problem. SIAM J. Appl. Math. 55(6), 1577–1591 (1995)

    MathSciNet  Google Scholar 

  55. Suli, E.: Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53(4), 459–483 (1988)

    MathSciNet  Google Scholar 

  56. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, (2001)

  57. Tian, F.B., Luo, H., Zhu, L., Liao, J.C., Lu, X.Y.: An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J. Comput. Phys. 230(19), 7266–7283 (2011)

    MathSciNet  Google Scholar 

  58. Tu, C., Peskin, C.S.: Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods. SIAM J. Sci. Stat. Comput. 13(6), 1361–1376 (2004)

    MathSciNet  Google Scholar 

  59. Wang, X., Wang, C., Zhang, L.T.: Semi-implicit formulation of the immersed finite element method. Comput. Mech. 49(4), 421–430 (2012)

    MathSciNet  Google Scholar 

  60. Wang, X., Zhang, L.T.: Interpolation functions in the immersed boundary and finite element methods. Comput. Mech. 45(4), 321–334 (2010)

    Google Scholar 

  61. Yagawa, G., Eguchi, Y.: Finite element methods for incompressible viscous flow. JSME Int. J. 30(265), 1009–1017 (2008)

    Google Scholar 

  62. Yang, J., Agrawal, A., Samali, B.: Benchmark problem for response control of wind-excited tall buildings. J. Engrg. Mech. 130(4), 437–446 (2004)

    Google Scholar 

  63. Zeng, Y., Huang, P., He, Y.: A time filter method for solving the double-diffusive natural convection model. Comput. Fluids 235, 105265 (2022)

    MathSciNet  Google Scholar 

  64. Zhang, L.T., Gay, M.: Immersed finite element method for fluid-structure interactions. J. Fluid. Struct. 23(6), 839–857 (2007)

    Google Scholar 

  65. Zhao, H., Freund, J.B., Moser, R.D.: A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J. Comput. Phys. 227(6), 3114–3140 (2008)

    MathSciNet  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant Nos. 12271440, 12371407) and the Fundamental Research Funds for the Central Universities of ChinaGrant No. D5000230046.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Cai or Feifei Jing.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (Grant Nos. 12271440, 12371407) and the Fundamental Research Funds for the Central Universities of China–Grant No. D5000230046.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Cai, L., Jing, F. et al. On the Immersed Boundary Method with Time-Filter-SAV for Solving Fluid–Structure Interaction Problem. J Sci Comput 100, 45 (2024). https://doi.org/10.1007/s10915-024-02591-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02591-5

Keywords