[go: up one dir, main page]

Skip to main content
Log in

Asymptotic-Preserving Neural Networks for Multiscale Vlasov–Poisson–Fokker–Planck System in the High-Field Regime

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Vlasov–Poisson–Fokker–Planck (VPFP) system is a fundamental model in plasma physics that describes the Brownian motion of a large ensemble of particles within a surrounding bath. Under the high-field scaling, both collision and field are dominant. This paper introduces two Asymptotic-Preserving Neural Network (APNN) methods within a physics-informed neural network (PINN) framework for solving the VPFP system in the high-field regime. These methods aim to overcome the computational challenges posed by high dimensionality and multiple scales of the system. The first APNN method leverages the micro–macro decomposition model of the original VPFP system, while the second is based on the mass conservation law. Both methods ensure that the loss function of the neural networks transitions naturally from the kinetic model to the high-field limit model, thereby preserving the correct asymptotic behavior. Through extensive numerical experiments, these APNN methods demonstrate their effectiveness in solving multiscale and high dimensional uncertain problems, as well as their broader applicability for problems with long time duration and non-equilibrium initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data availability is not applicable to this article as no new data were generated or analyzed in this research.

References

  1. Arnold, A., Carrillo, J.A., Gamba, I., Shu, C.-W.: Low and high field scaling limits for the Vlasov-and Wigner–Poisson–Fokker–Planck systems. Transp. Theory Stat. Phys. 30, 121–153 (2001)

    Article  MathSciNet  Google Scholar 

  2. Berman, P., Haverkort, J., Woerdman, J.: Collision kernels and transport coefficients. Phys. Rev. A 34, 4647 (1986)

    Article  Google Scholar 

  3. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)

    Book  Google Scholar 

  4. Carrillo, J.A., Wang, L., Xu, W., Yan, M.: Variational asymptotic preserving scheme for the Vlasov–Poisson–Fokker–Planck system. Multisc. Model. Simul. 19, 478–505 (2021)

    Article  MathSciNet  Google Scholar 

  5. Cercignani, C., Gamba, I., Levermore, C.: High field approximations to a Boltzmann–Poisson system and boundary conditions in a semiconductor. Appl. Math. Lett. 10, 111–117 (1997)

    Article  MathSciNet  Google Scholar 

  6. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1 (1943)

    Article  MathSciNet  Google Scholar 

  7. Chen, T., Chen, H.: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Netw. 6, 911–917 (1995)

    Article  Google Scholar 

  8. Chen, Z., Liu, L., Mu, L.: Solving the linear transport equation by a deep neural network approach. Discrete Contin. Dynam. Syst. - S 15, 669–686 (2022)

    Article  MathSciNet  Google Scholar 

  9. Crouseilles, N., Lemou, M.: An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. Kinet. Relat. Models 4, 441 (2011)

    Article  MathSciNet  Google Scholar 

  10. Degond, P.: Asymptotic-Preserving Schemes for Fluid Models of Plasmas, Panoramas et Synthèses, (2013)

  11. Delgadillo, R.A., Hu, J., Yang, H.: Multiscale and nonlocal learning for PDEs using densely connected RNNs, (2021) arXiv preprint arXiv:2109.01790,

  12. Goudon, T., Nieto, J., Poupaud, F., Soler, J.: Multidimensional high-field limit of the electrostatic Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ. 213, 418–442 (2005)

    Article  MathSciNet  Google Scholar 

  13. Havlak, K.J., Victory, H.D., Jr.: The numerical analysis of random particle methods applied to Vlasov–Poisson–Fokker–Planck kinetic equations. SIAM J. Numer. Anal. 33, 291–317 (1996)

    Article  MathSciNet  Google Scholar 

  14. Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Lecture notes for summer school on methods and models of kinetic theory (M &MKT), Porto Ercole, pp. 177–216. Italy, Grosseto (2010)

  15. Jin, S.: Asymptotic-preserving schemes for multiscale physical problems. Acta Numer. 31, 415–489 (2022)

    Article  MathSciNet  Google Scholar 

  16. Jin, S., Liu, J.-G., Ma, Z.: Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro-macro decomposition-based asymptotic-preserving method. Res. Math. Sci. 4, 15 (2017)

    Article  MathSciNet  Google Scholar 

  17. Jin, S., Ma, Z., Wu, K.: Asymptotic-preserving neural networks for multiscale kinetic equations, (2023) arXiv preprint arXiv:2306.15381

  18. Jin, S., Pareschi, L.: Uncertainty Quantification for Hyperbolic and Kinetic Equations. Springer, Berlin (2017)

    Book  Google Scholar 

  19. Jin, S., Wang, L.: An asymptotic preserving scheme for the Vlasov–Poisson–Fokker–Planck system in the high field regime. Acta Math. Sci. 31, 2219–2232 (2011)

    Article  MathSciNet  Google Scholar 

  20. Jin, S., Wang, L.: Asymptotic-preserving numerical schemes for the semiconductor Boltzmann equation efficient in the high field regime. SIAM J. Sci. Comput. 35, B799–B819 (2013)

    Article  MathSciNet  Google Scholar 

  21. Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural networks. Eur. J. Appl. Math. 32, 421–435 (2021)

    Article  MathSciNet  Google Scholar 

  22. Koura, K., Matsumoto, H.: Variable soft sphere molecular model for inverse-power-law or Lennard–Jones potential. Phys. Fluids A 3, 2459–2465 (1991)

    Article  Google Scholar 

  23. Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A.: Neural operator: learning maps between function spaces with applications to PDEs. J. Mach. Learn. Res. 24, 1–97 (2023)

    MathSciNet  Google Scholar 

  24. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998)

    Article  Google Scholar 

  25. Lemou, M., Mieussens, L.: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31, 334–368 (2008)

    Article  MathSciNet  Google Scholar 

  26. Li, H., Jiang, S., Sun, W., Xu, L., Zhou, G.: A model-data asymptotic-preserving neural network method based on micro-macro decomposition for gray radiative transfer equations, (2022) arXiv preprint arXiv:2212.05523

  27. Li, Z., Dong, B., Wang, Y.: Learning invariance preserving moment closure model for Boltzmann-BGK equation. Commun. Math. Stat. 11, 59–101 (2023)

    MathSciNet  Google Scholar 

  28. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Fourier neural operator for parametric partial differential equations, (2020) arXiv preprint arXiv:2010.08895

  29. Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzadenesheli, K., Anandkumar, A.: Physics-informed neural operator for learning partial differential equations, (2021) arXiv preprint arXiv:2111.03794

  30. Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-Net: Learning PDEs from data. In International Conference on Machine Learning, PMLR, pp. 3208–3216 (2018)

  31. Longo, S.: Monte Carlo models of electron and ion transport in non-equilibrium plasmas. Plasma Sour. Sci. Technol. 9, 468 (2000)

    Article  Google Scholar 

  32. Lou, Q., Meng, X., Karniadakis, G.E.: Physics-informed neural networks for solving forward and inverse flow problems via the Boltzmann-BGK formulation. J. Comput. Phys. 447, 110676 (2021)

    Article  MathSciNet  Google Scholar 

  33. Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3, 218–229 (2021)

    Article  Google Scholar 

  34. Lu, Y., Wang, L., Xu, W.: Solving multiscale steady radiative transfer equation using neural networks with uniform stability. Res. Math. Sci. 9, 45 (2022)

    Article  MathSciNet  Google Scholar 

  35. McClenny, L., Braga-Neto, U.:, Self-adaptive physics-informed neural networks using a soft attention mechanism, (2020) arXiv preprint arXiv:2009.04544

  36. Nieto, J., Poupaud, F., Soler, J.: High-field limit for the Vlasov–Poisson–Fokker–Planck system. Arch. Ration. Mech. Anal. 158, 29–59 (2001)

    Article  MathSciNet  Google Scholar 

  37. Poëtte, G.: A gPC-intrusive Monte-Carlo scheme for the resolution of the uncertain linear Boltzmann equation. J. Comput. Phys. 385, 135–162 (2019)

    Article  MathSciNet  Google Scholar 

  38. Poëtte, G.: Numerical analysis of the Monte-Carlo noise for the resolution of the deterministic and uncertain linear Boltzmann equation (comparison of non-intrusive gPC and MC-gPC), Journal of Computational and Theoretical. Transport 51, 1–53 (2022)

    MathSciNet  Google Scholar 

  39. Poupaud, F., Soler, J.: Parabolic limit and stability of the Vlasov–Fokker–Planck system. Math. Models Methods Appl. Sci. 10, 1027–1045 (2000)

    Article  MathSciNet  Google Scholar 

  40. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  41. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

    Article  MathSciNet  Google Scholar 

  42. Stein, M.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29, 143–151 (1987)

    Article  MathSciNet  Google Scholar 

  43. Subramanian, S., Kirby, R.M., Mahoney, M.W., Gholami, A.: Adaptive self-supervision algorithms for physics-informed neural networks, (2022) arXiv preprint arXiv:2207.04084

  44. Victory Jr. H.D., O’Dwyer, B.P.: On classical solutions of Vlasov–Poisson Fokker–Planck systems, Indiana Univ. Math. J. 105–156 (1990)

  45. Wang, S., Wang, H., Perdikaris, P.: Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Sci. Adv. 7, eabi8605 (2021)

    Article  Google Scholar 

  46. Weinan, E., Han, J., Jentzen, A.: Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning. Nonlinearity 35, 278 (2021)

    MathSciNet  Google Scholar 

  47. Xu, Z.-Q.J., Zhang, Y., Luo, T., Xiao, Y., Ma, Z.: Frequency principle: Fourier analysis sheds light on deep neural networks, (2019) arXiv preprint arXiv:1901.06523

  48. Yu, B., E, W.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6, 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  49. Zhu, Y., Jin, S.: The Vlasov–Poisson–Fokker–Planck system with uncertainty and a one-dimensional asymptotic preserving method. Multisc. Model. Simul. 15, 1502–1529 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Shi Jin is partially supported by the Strategic Priority Research Program of Chinese Academy of Sciences XDA25010401, the NSFC Grant No. 12031013, the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102), and the Fundamental Research Funds for the Central Universities. Zheng Ma is supported by NSFC Grant Nos. 12031013, 92270120 and Foundation of LCP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-ai Zhang.

Ethics declarations

Conflict of interest

No potential conflict of interest was declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Ma, Z. & Zhang, Ta. Asymptotic-Preserving Neural Networks for Multiscale Vlasov–Poisson–Fokker–Planck System in the High-Field Regime. J Sci Comput 99, 61 (2024). https://doi.org/10.1007/s10915-024-02527-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02527-z

Keywords

Mathematics Subject Classification