[go: up one dir, main page]

Skip to main content
Log in

Leapfrog Time-Stepping for Hermite Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce Hermite-leapfrog methods for first order linear wave systems. The new Hermite-leapfrog methods pair leapfrog time-stepping with the Hermite methods of Goodrich and co-authors et al. (Math Comput 75(254):595–630, 2006). The new schemes stagger field variables in both time and space and are high-order accurate for equations with smooth solutions and coefficients. We provide a detailed description of the method and demonstrate that the method conserves variable quantities. Higher dimensional versions of the method are constructed via tensor products. Numerical evidence and rigorous analysis in one space dimension establish stability and high-order convergence. Experiments demonstrating efficient implementations on a graphics processing unit are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Appelo, D., Hagstrom, T., Vargas, A.: Hermite methods for the scalar wave equation. SIAM J. Sci. Comput. 40, A3902–A3927 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appelö, D., Inkman, M., Hagstrom, T., Colonius, T.: Hermite methods for aeroacoustics: recent progress. In: 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, Oregon (2011)

  3. Bencomo, M.J.: Discontinuous Galerkin and finite difference methods for the acoustic equations with smooth coefficients. Ph.D. thesis, Rice University (2015)

  4. Chen, R., Hagstrom, T.: P-adaptive Hermite methods for initial value problems. ESAIM Math. Model. Numer. Anal. 46(3), 545–557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X.R., Appelö, D., Hagstrom, T.: A hybrid Hermite-discontinuous Galerkin method for hyperbolic systems with application to Maxwell’s equations. J. Comput. Phys. 257, 501–520 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gauthier, O., Virieux, J., Tarantola, A.: Two-dimensional nonlinear inversion of seismic waveforms: numerical results. Geophysics 51(7), 1387–1403 (1986)

    Article  Google Scholar 

  7. Goodrich, J., Hagstrom, T., Lorenz, J.: Hermite methods for hyperbolic initial-boundary value problems. Math. Comput. 75(254), 595–630 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kornelus, A., Appelö, D.: Flux-conservative hermite methods for simulation of nonlinear conservation laws. J. Sci. Comput. 76(1), 24–47 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kowalczyk, K., Van Walstijn, M.: A comparison of nonstaggered compact FDTD schemes for the 3D wave equation. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 197–200. IEEE (2010)

  10. Levander, A.R.: Fourth-order finite-difference P-SV seismograms. Geophysics 53(11), 1425–1436 (1988)

    Article  Google Scholar 

  11. LeVeque, R.J.: Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  12. Medina, D.: OKL: A unified language for parallel architectures. Ph.D. thesis, Rice University (2015)

  13. Vargas, A.: Hermite methods for the simulation of wave propagation. Ph.D. thesis (2017)

  14. Vargas, A., Chan, J., Hagstrom, T., Warburton, T.: GPU acceleration of Hermite methods for the simulation of wave propagation. In: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, pp. 357–368. Springer (2017)

  15. Vargas, A., Chan, J., Hagstrom, T., Warburton, T.: Variations on Hermite methods for wave propagation. Commun. Comput. Phys. 22(2), 303–337 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xie, Z., Chan, C.H., Zhang, B.: An explicit fourth-order staggered finite-difference time-domain method for maxwell’s equations. J. Comput. Appl. Math. 147(1), 75–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  18. Yefet, A., Petropoulos, P.G.: A staggered fourth-order accurate explicit finite difference scheme for the time-domain maxwell’s equations. J. Comput. Phys. 168(2), 286–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Daniel Appelö for the fruitful conversations. TH is supported in part by NSF Grant DMS-1418871. Any conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of the NSF. JC is supported by NSF Grants DMS-1719818 and DMS-1712639. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-757049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Vargas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, A., Hagstrom, T., Chan, J. et al. Leapfrog Time-Stepping for Hermite Methods. J Sci Comput 80, 289–314 (2019). https://doi.org/10.1007/s10915-019-00938-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00938-x

Keywords

Navigation