[go: up one dir, main page]

Skip to main content
Log in

Computational Modelling of Biosensors with Perforated and Selective Membranes

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This paper presents a two-dimensional-in-space mathematical model of amperometric biosensors with perforated and selective membranes. The model is based on the diffusion equations containing a non-linear term of the Michaelis–Menten enzymatic reaction. Using numerical simulation of the biosensors action, the influence of the geometry of the perforated membrane on the biosensor response was investigated. The numerical simulation was carried out using finite-difference technique. The calculations demonstrated non-linear and non-monotonous change of the biosensor steady-state current at various degree of the surface of the perforated membrane covering. The non-monotonous behaviour of the biosensor response was also observed when changing the thickness of the perforated membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Turner A.P.F., Karube I., Wilson G.S. (1987). Biosensors: Fundamentals and Applications. Oxford University Press, Oxford

    Google Scholar 

  • Scheller F., Schubert F. (1992). Biosensors. Elsevier Science, Amsterdam

    Google Scholar 

  • Guilbault G.G. (1984). Analytical Uses of Immobilized Enzymes. Marcel Dekker, New York

    Google Scholar 

  • Chaubey A., Malhotra B.D. (2002). Biosens. Bioelectron. 17: 441

    Article  CAS  Google Scholar 

  • J. Rodriguez–Flores and E. Lorenzo, in: Analytical Voltammetry, eds. M.R. Smyth and J.G. Vos (Elsevier Science, Amsterdam, 1992) pp. 531–570

  • Wollenberger U., Lisdat F., Scheller F.W. (1997). Frontiers in Biosensorics 2: Practical Applications. Birkhauser Verlag, Basel

    Google Scholar 

  • Rogers K.R. (1995). Biosens. Bioelectron. 10: 533

    Article  CAS  Google Scholar 

  • Baeumner A.J., Jones C., Wong C.Y., Price A. (2004). Anal. Bioanal. Chem. 378: 1587

    Article  CAS  Google Scholar 

  • Antiochia R., Lavagnini I., Magno F. (2004). Anal. Lett. 37: 1657

    Article  CAS  Google Scholar 

  • Bindra D.S., Zhang Y., Wilson G.S., Sternberg R., Thévenot D.R., Moatti D., Reach G. (1991). Anal. Chem. 63:1692

    Article  CAS  Google Scholar 

  • Pfeiffer D., Scheller F.W., Setz K., Schubert F. (1993). Anal. Chim. Acta 281: 489

    Article  CAS  Google Scholar 

  • Scheller F.W., Pfeiffer D. (1978). Z. Chem. 18: 50

    Article  CAS  Google Scholar 

  • Bartlett P.N., Pratt K.F.E. (1993). Biosens. Bioelectron. 8: 451

    Article  CAS  Google Scholar 

  • Buerk D.G. (1995). Biosensors: Theory and Applications. CRC Press, Lancaster

    Google Scholar 

  • Ferreira L.S., De Souza M.B., Trierweiler J.O., Broxtermann O., Folly R.O.M., Hitzmann B. (2003). Comput. Chem. Eng. 27: 1165

    Article  CAS  Google Scholar 

  • Schulmeister T. (1990). Selective Electrode Rev. 12: 260

    Google Scholar 

  • Schulmeister T., Pfeiffer D. (1993). Biosens. Bioelectron. 8: 75

    Article  CAS  Google Scholar 

  • Gueshi T., Tokuda K., Matsuda H. (1978). J. Electroanal. Chem. 89: 247

    Article  CAS  Google Scholar 

  • Deslous C., Gabrielli C., Keddam M., Khalil A., Rosset R., Trobollet B., Zidoune M. (1997). Electrochim. Acta 42: 1219

    Article  Google Scholar 

  • Baronas R., Ivanauskas F., Survila A. J. Math. Chem. 27: 267

  • Baronas R., Ivanauskas F., Kulys J., Sapagovas M. (2004). Nonlinear Anal. Model. Contr. 9: 203

    Google Scholar 

  • Crank J. (1975). The Mathematics of Diffusion, 2nd ed. Clarendon Press, Oxford

    Google Scholar 

  • Britz D. (1988). Digital Simulation in Electrochemistry, 2nd ed. Springer-Verlag, Berlin

    Google Scholar 

  • Samarskii A.A. (2001). The Theory of Difference Schemes. Marcel Dekker, New York–Basel

    Google Scholar 

  • Kulys J. (1981). Anal. Lett. 14: 377

    CAS  Google Scholar 

  • Aris R. (1975). The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. The Theory of the Steady State. Clarendon Press, Oxford

    Google Scholar 

  • Carr P.W., Bowers L.D. (1980). Immobilized Enzymes in Analytical and Clinical Chemistry: Fundamentals and Applications. John Wiley, New York

    Google Scholar 

  • Baronas R., Ivanauskas F., Kulys J. (2003). Nonlinear Anal. Model. Contr. 8: 3

    CAS  Google Scholar 

  • Bakhvalov N.S., Panasenko G.P. (1989). Homogenization: Averaging Processes in Periodic Media. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Baronas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baronas, R., Kulys, J. & Ivanauskas, F. Computational Modelling of Biosensors with Perforated and Selective Membranes. J Math Chem 39, 345–362 (2006). https://doi.org/10.1007/s10910-005-9034-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-005-9034-0

Keywords

AMS subject classification

Navigation