[go: up one dir, main page]

Skip to main content
Log in

Latest Progress on the QUBIC Instrument

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

QUBIC is a unique instrument that crosses the barriers between classical imaging architectures and interferometry taking advantage from both high sensitivity and systematics mitigation. The scientific target is to detect primordial gravitational waves created by inflation by the polarization they imprint on the cosmic microwave background—the holy grail of modern cosmology. In this paper, we show the latest advances in the development of the architecture and the sub-systems of the first module of this instrument to be deployed at Dome Charlie Concordia base—Antarctica in 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Application Specific Integrated Circuit

  2. Superconducting Quantum Interference Devices

References

  1. M. Zaldarriaga, Carnegie Obs. Astrophys. Ser. 2, 309 (2004)

    Google Scholar 

  2. E. Batistelli et al., Astropart. Phys. 34(9), 705–716 (2011)

    Article  ADS  Google Scholar 

  3. S. Masi et al., Cryogenics 39, 217–224 (1999)

    Article  ADS  Google Scholar 

  4. G. Polenta et al., New Astron. Rev. 51, 256–259 (2007)

    Article  ADS  Google Scholar 

  5. E.S. Battistelli et al., Mon. Not. R. Astron. Soc. 423, 1293–1299 (2012)

    Article  ADS  Google Scholar 

  6. S. Ali et al., AIP Conf. Proc. 616, 126–128 (2001)

    Article  ADS  Google Scholar 

  7. L. Piccirilo, Mem. Soc. Astron. It. S. 2, 200 (2003)

    Google Scholar 

  8. A. Ghribi et al., J. Infrared Millim. Terahertz Waves 31(1), 88–99 (2010)

    MathSciNet  Google Scholar 

  9. Charlassier et al., A &A 497(3), 963–971 (2009)

    ADS  Google Scholar 

  10. M.-A. Bigot-Sazy, A &A 550(A59), 11 (2013)

    Google Scholar 

  11. M. Salatino, P. de Bernardis, S. Masi, A &A 528, A138 (2011)

    ADS  Google Scholar 

  12. G. Pisano et al., PIER M 25, 101 (2012)

    Article  Google Scholar 

  13. F. Del Torto et al., JINST 6, P0600 (2011)

    Article  Google Scholar 

  14. F. Pajot et al., J. Low Temp. Phys. 151, 513 (2008)

    Article  ADS  Google Scholar 

  15. Martino J., PhD thesis, 2012.

  16. Prêle D. et al., Eur. Astron. Soc., 37, 2009.

  17. D. Gayer et al., Proc. SPIE 8452, 8 (2012)

    Google Scholar 

Download references

Acknowledgments

Agence Nationale de la Recherche (ANR), Centre National dEtudes Spatiales (CNES), Centre National de la Recherche Scientifique (CNRS), Science and Technology Facilities Council (STFC), the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), Instititut Paul Emile Victor (IPEV), Programma Nazionale Ricerche in Antartide (PNRA), Science Foundation Ireland (SFI). and Labex UnivEarthS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghribi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghribi, A., Aumont, J., Battistelli, E.S. et al. Latest Progress on the QUBIC Instrument. J Low Temp Phys 176, 698–704 (2014). https://doi.org/10.1007/s10909-013-1024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-1024-1

Keywords

Navigation