[go: up one dir, main page]

Skip to main content
Log in

Structural and Biological Investigation of Green Synthesized Silver and Zinc Oxide Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Green synthesis nanoparticles are considered as an alternative effective resource instead of chemical engineered nanoparticles. Using seed extract for green synthesis, essential for the reduction and oxidation process of the metals. Rauvolfia tetraphylla (L.) seed extract was used to synthesize dark brown colored silver (Ag) and white colored zinc oxide (ZnO) nanoparticles. Synthesized nanoparticles were characterized by different spectroscopic analysis (XRD, XPS, and SEM with EDAX). Characterization results confirmed the particle morphology, and structure. The synthesized Ag and ZnO NPs were analyzed against two gram positive and three gram negative bacteria. Increased levels of green synthesized Ag and ZnO NPs showed increased zone of inhibition than compared with ciprofloxacin (positive control). Our study proved that the green synthesized Ag and ZnO NPs showed similar unique physical and chemical properties with composite/doped metal oxide nanoparticles but less toxic while their discharge into the ecosystem.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Y. Ju-Nam, J.R. Lead, Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. S.P. Vinay, N.G. Udayabhanu, H.S. Lalithamba, N. Chandrashekar, Scientia Iranica (2019). https://doi.org/10.24200/SCI.2019.51275.2093

    Article  Google Scholar 

  3. B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. J.K. Stanley, J. Coleman, G.A. Charles, J. Weiss, J.A. Steevens, Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide. Environ. Toxicol. Chem. 29, 422–429 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. S.J. Klaine, A.A. Koelmans, N. Horne, S. Carley, R.D. Handy, L. Kapustka, B. Nowack, F. von der Kammer, Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 31(1), 3–14 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. T. Muralisankar, P. Saravana Bhavan, S. Radhakrishnan, C. Seenivasan, V. Srinivasan, The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J. Trace Elem. Med. Biol. 34, 39–49 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. J.B. Glenn, S.A. White, S.J. Klaine, Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ. Toxicol. Chem. 31(1), 194–201 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. S.J. Varjani, M.C. Sudha, Treatment technologies for emerging organic contaminants removal from wastewater, in Water Remediation. (Springer, New York, 2018), p. 91–115.

  9. M.S. Kiran, S.V. Betageri, C.R.R. Kumar, S.P. Vinay, M.S. Latha, In-vitro antibacterial, antioxidant and cytotoxic potential of silver nanoparticles synthesized using novel eucalyptus tereticornis leaves extract. J. Inorg. Organometall. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01443-7

    Article  Google Scholar 

  10. S.P. Vinay, Udayabhanu, H.N. Sumedha, G. Nagaraju, S. Harishkumar, N. Chandrashekar, Photocatalytic, photoluminescence and antibacterial studies of silver oxide nanoparticles using the Cantaloupe seeds via green route. Appl. Organomet. Chem (2020). https://doi.org/10.1002/aoc.5830

    Article  Google Scholar 

  11. F.A. Alharthi, S.P. Vinay, N.G. Udayabhanu, N. Al-Zaqri, Low temperature ionothermal synthesis of TiO2 nanomaterials for efficient photocatalytic H2 production, dye degradation and Photoluminescence studies. Int. J. Energy Res. 1, 2–3 (2020). https://doi.org/10.1002/er.5471

    Article  CAS  Google Scholar 

  12. S. Zhu, D. Wang, Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 7, 1700841 (2017)

    Article  CAS  Google Scholar 

  13. S.P. Vinay, N.G. Udayabhanu, B. Hemasekhar, C.P. Chandrappa, N. Chandrashekar, (2019) Biomedical applications of Durio zibethinus extract mediated gold nanoparticles as antimicrobial, antioxidant and anticoagulant activity. Int. J. Biosens. Bioelectr. 5(4), 150–155 (2019)

    Google Scholar 

  14. L. Zhao, J. Deng, P. Sun, J. Liu, Y. Ji, N. Nakada, Z. Qiao, H. Tanaka, Y. Yang, Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Sci. Total Environ. 627, 1253–1263 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surf. B 79(1), 5–18 (2010)

    Article  CAS  Google Scholar 

  16. W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li, Z. Sun, Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 199(3), 389–397 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. S.P. Vinay, Udayabhanu, G. Nagaraju, C.P. Chandrappa, N. Chandrashekar, Novel Gomutra (cow urine) mediated synthesis of silver oxide nanoparticles and their enhanced photocatalytic, photoluminescence and antibacterial studies. J. Sci.: Adv. Mater. Devices 4, 392–399 (2019)

    Google Scholar 

  18. N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater. 9(3), 35–40 (2008)

    Article  CAS  Google Scholar 

  19. S.P. Vinay, Udayabhanu, G. Nagaraju, C.P. Chandrappa, N. Chandrashekar, Ixora coccinea extract-mediated green synthesis of silver nanoparticles: photodegradative and antimicrobial studies. Int. J. Biosens. Bioelectron. 5(4), 100–105 (2019). https://doi.org/10.15406/ijbsbe.2019.05.00161

    Article  Google Scholar 

  20. H. Hao, X. Lang, Metal sulfide photocatalysis: visible-light-induced organic transformations. ChemCatChem 11, 1378–1393 (2019)

    Article  CAS  Google Scholar 

  21. V. Vaiano, M. Matarangolo, J. Murcia, H. Rojas, J.A. Navío, M. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B 225, 197–206 (2018)

    Article  CAS  Google Scholar 

  22. M. Raghavendra, S.P. Vinay, H.S. Lalithamba, Nano NiO catalyst: synthesis, characterization and their application for the synthesis of substituted imidazoles. Tumbe Group of International journals 1, 1–8 (2018)

    Google Scholar 

  23. S.P. Vinay, N. Chandrasekhar, Screening and characterization of micro organisms for the bio-production of electricity from rice straw using microbial fuel cell. IJIRSET 6(7), 14670 (2017)

    Google Scholar 

  24. E.J. Rupa, L. Kaliraj, S. Abid, D.-C. Yang, S.-K. Jung, Synthesis of a zinc oxide nanoflower photocatalyst from sea buckthorn fruit for degradation of industrial dyes in wastewater treatment. Nanomaterials 9, 1692 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  25. S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram, P. Praseetha, Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater. Sci. Semicond. Process. 82, 39–45 (2018)

    Article  CAS  Google Scholar 

  26. S.P. Vinay, N. Chandrasekhar, Synthesis of Silver nanoparticles by bioreduction method using leaves extracts of Tecoma capensis and study of their antibacterial properties. IJIRSET 6(7), 14563 (2017)

    Google Scholar 

  27. J. Lu, H. Ali, J. Hurh, Y. Han, I. Batjikh, E.J. Rupa, G. Anandapadmanaban, J.K. Park, D.C. Yang, The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method. Optik 184, 82–89 (2019)

    Article  CAS  Google Scholar 

  28. D.P. Nidia, S.M. Giovanni, M. Eduardo, T.R. Sabrina, S. Miguel, E. Denise, C.N. William, Effect of Phyllanthus niruri on metabolic parameters of patients with kidney stone: a perspective for disease prevention. Int. Braz. J. Urol. 44(4), 758–764 (2018)

    Article  Google Scholar 

  29. B. Payel, B. Debasis, Characterization of the aqueous extract of the root of Aristolochia indica: evaluation of its traditional use as an antidote for snake bites. J. Ethnopharma 145(1), 220–226 (2013)

    Article  CAS  Google Scholar 

  30. J. Zheng, K. Nagashima, D. Parmiter, J. de la Cruz, A.K. Patri, SEM X-ray microanalysis of nanoparticles present in tissue or cultured cell thin sections. Methods Mol Boil 697, 93–99 (2011)

    Article  CAS  Google Scholar 

  31. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Diffraction II (Springer, Berlin, 1996)

    Book  Google Scholar 

  32. P.K. Mallik, P.K. Swain, S.C. Patnaik, Characterisation of suspension precipitated nanocrystalline hydroxyapatite powders. IOP Conf. Ser. 115, 12–25 (2016)

    Article  Google Scholar 

  33. S.P. Vinay, N.G. Udayabhanu, C.P. Chandrappa, N. Chandrasekhar. J. Clust. Sci. (2019). https://doi.org/10.1007/s10876-019-01598-5

    Article  Google Scholar 

  34. S.P. Vinay, N. Chandrasekhar, IOSR-J. Appl. Chem. 10(7), 57–63 (2017)

    Article  CAS  Google Scholar 

  35. C. Suryanarayana, N.M. Grant, X-ray diffraction: a practical approach. Micro Microanal. 4(5), 513–515 (1998)

    Article  CAS  Google Scholar 

  36. J. Molpeceres, M.R. Aberturas, M. Guzman, Biodegradable nanoparticles as a delivery system for cyclosporine: preparation and characterization. J. Microencapsul. 17, 599–614 (2000)

    Article  CAS  PubMed  Google Scholar 

  37. C. Valgas, S.M. De Souza, E.F.A. Smânia, Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38, 369–380 (2007)

    Article  Google Scholar 

  38. S.P. Vinay, N. Chandrasekhar, Int. J. Multidiscip. Res. Rev. 1(29), 109–114 (2017)

    Google Scholar 

  39. N. Chandrasekhar, S.P. Vinay, Appl. Nanosci. 7, 851–861 (2017)

    Article  CAS  Google Scholar 

  40. S.P. Vinay, N. Chandrashekar, C.P. Chandrappa, Res. J. Pharm. Biol. Chem. Sci. 8(4), 527–534 (2017)

    CAS  Google Scholar 

  41. S.P. Vinay, N. Chandrasekhar, Int. Res. J. Nat. Appl. Sci. 4(7), 9–19 (2017)

    Google Scholar 

  42. S.P. Vinay, N. Chandrashekar, C.P. Chandrappa, Int. J. Pharm. Biol. Sci. 7(2), 145–152 (2017)

    CAS  Google Scholar 

  43. S.P. Vinay, N. Chandrashekar, C.P. Chandrappa, Int. J. Eng. Dev. Res. 5(2), 1608–1613 (2017)

    Google Scholar 

  44. S.P. Vinay, N. Chandrasekhar, Mater. Today 9, 499–505 (2019). https://doi.org/10.1016/j.matpr.2018.10.368

    Article  CAS  Google Scholar 

  45. N. Goswami, A. Sahai, Mater. Res. Bull 48, 346–351 (2013)

    Article  CAS  Google Scholar 

  46. C. Vidya, M.N. Shilpa Hiremath, M.A. Chandraprabha, A. Lourdu, V.G. Indu, J. Aayushi, B. Kokil, Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int. J. Curr. Eng. Technol. 1, 118–120 (2013)

    Google Scholar 

  47. F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza, Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 161, 124–127 (2015)

    Article  CAS  Google Scholar 

  48. A. Sahai, N. Goswami, Ceram. Int. 40, 14569–14578 (2014). https://doi.org/10.1063/1.4917664

    Article  CAS  Google Scholar 

  49. E.S. De la Rosa, B. Sepulveda-Guzman, A. Reeja-Jayan, P.S. Torres, N. Elizondo, M. Jose Yacaman, Controlling the growth and luminescence properties of well-faceted ZnO nanorods. J Phys. Chem. C 111(24), 8489–8495 (2007)

    Article  CAS  Google Scholar 

  50. K. Remashan, H. Dae-Kue, P. Seong-Ju, J. Jae-Hyung, Effect of rapid thermal annealing on the electrical characteristics of ZnO thin-film transistors. Japanese J Appl Phy 47(4S), 2848 (2008)

    Article  CAS  Google Scholar 

  51. L. Armelao, B. Gregorio, B. Laura, M. Chiara, T. Eugenio, A. Francesca, B. Sara, C. Paolo, Proteins conjugation with ZnO sol–gel nanopowders. J sol-gel Sci Tech 60(3), 352–358 (2011)

    Article  CAS  Google Scholar 

  52. S.P. Vinay, N.G. Udayabhanu, C.P. Chandrappa, N. Chandrasekhar, Appl. Sci. 1, 477 (2019). https://doi.org/10.1007/s42452-019-0437-0

    Article  CAS  Google Scholar 

  53. S.P. Vinay, N. Chandrasekhar, Int. J. Multidiscip. Res. Rev. 1(29), 65–70 (2017)

    Google Scholar 

  54. S.P. Vinay, N.G. Udayabhanu, C.P. Chandrappa, N. Chandrashekar, Chem. Phys. Lett. 1, 2–3 (2020). https://doi.org/10.1016/j.cplett.2020.137402

    Article  CAS  Google Scholar 

  55. S.P. Vinay, N.G. Udayabhanu, C.P. Chandrappa, N. Chandrashekar, Appl. Nanosci. 1, 1–2 (2020). https://doi.org/10.1007/s13204-020-01289-y

    Article  CAS  Google Scholar 

  56. S.P. Vinay, N. Chandrashekar, (2019). Adv Mater. Lett. 10(11), 844–849 (2019)

    Article  CAS  Google Scholar 

  57. Y. Hu, H.J. Chen, J. Nanopart. Res. 10, 401–407 (2008)

    Article  CAS  Google Scholar 

  58. J. Jung, K. Gopinath, S. Jongchul, Development of functional antimicrobial papers using chitosan/starch-silver nanoparticles. Int. J. Biol. Macromol. 112, 530–536 (2018)

    Article  CAS  PubMed  Google Scholar 

  59. A. Santhoshkumar, H.P. Kavitha, R. Suresh, Hydrothermal synthesis, characterization and antibacterial activity of NiO nanoparticles. J. Adv. Chem. Sci. 24, 230–232 (2016)

    Google Scholar 

  60. G.X. Tong, F.F. Du, Y. Liang, Q. Hu, R.N. Wu, J.G. Guan, X. Hu, Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. J. Mater. Chem. B 1(4), 454–463 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Vinay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinay, S.P., Chandrasekhar, N. Structural and Biological Investigation of Green Synthesized Silver and Zinc Oxide Nanoparticles. J Inorg Organomet Polym 31, 552–558 (2021). https://doi.org/10.1007/s10904-020-01727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01727-y

Keywords

Navigation