[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Polyvinylpyrrolidone Loaded-MnZnFe2O4 Magnetic Nanocomposites Induce Apoptosis in Cancer Cells Through Mitochondrial Damage and P53 Pathway

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

MnZnFe2O4 ferrite was successfully synthesized using metallic chlorides and polyvinylpyrolidone, by Co-precipitate method. Deferent concentrations of PVP (0.1, 0.3, 0.5, 0.7, and 0.9) wt%, were used as capping agent to stabilize the particles and prevent them from agglomeration. The PVP content had a vital influence on enhancing the properties of the ferrite nanoparticles. From X-ray data the degree of crystallinity and the Lattice constants (a) of the nanoparticles increased from (8.92 nm) and (8.344 Å) to (19.94 nm) and (8.395 Å) respectively with increasing PVP concentrations. The morphology and average particle size of the MnZn ferrite nanoparticles were evaluated by scanning electron microscopy (SEM), the values were in a good agreement with the XRD results. Fourier transform infrared spectroscopy (FT-IR) confirmed the cubic structure with octahedral and tetrahedral, also indicated the formation of bond between PVP and surface of metallic hydroxide of ferrite nanoparticles. Vibrating sample magnetometer (VSM) analysis was performed for all samples at room temperature, results showed that the specimens exhibited a paramagnetic behavior in the absence of PVP while in the presence of PVP they have super paramagnetic characteristics. The values of saturation magnetization (Ms) (1.78–17.67 emu/g), remnant magnetization (Mr) (0.0022–0.0696 emu/g) also increased with increasing pvp concentration. Polyvinylpyrrolidone loaded-MnZnFe2O4 magnetic nanocomposites were used it alone or as a combination therapy with NIR laser, and alternating magnetic field (AMF) as anti-proliferative agent against breast cancer cell lines AMJ-13, MCF-7,and ovarian cancer cell line SKOV-3 as well as against normal cell line HBL. While, its capability to induce apoptosis was detected using different techniques which is acridine orange/ethidium bromide (AO/EtBr) staining and mitochondrial membrane potential (MMP), and flow cytometry assay membrane potential (MMP). q-PCR was used to investigate the changes in the expression of P53 gene. The influence of Polyvinylpyrrolidone loaded-MnZnFe2O4 magnetic nanocomposites in viability of breast and ovarian cancer cells alone or when they used as a combination therapy with laser photo-thermal therapy and alternating magnetic field (AMF) was also tested using MTT assay. Our results in the present study demonstrated that the inhibition activity of Polyvinylpyrrolidone loaded-MnZnFe2O4 magnetic nanocomposites against treated cancer cell lines increased when Polyvinylpyrrolidone loaded-MnZnFe2O4 nanocomposites used with NIR laser, while highly increased cytotoxic activities were observed after exposure of Polyvinylpyrrolidone loaded-MnZnFe2O4 nanocomposites to induction heating with AMF. Treated cancer cells with polyvinylpyrrolidone loaded-MnZnFe2O4 magnetic nanocomposites significantly increased ROS synthesis, with subsequent reduction of the MMP. The results of the current study show that tested compounds suppressed cancers cells’ proliferation and has a growth inhibitory effect on different cancer cells, resulting in apoptosis as a novel pathway that involves mitochondrial damage mechanism via activated P53. Taken together the present data suggest that the Polyvinylpyrrolidone loaded-MnZnFe2O4 magnetic nanocomposites could be promising therapy protocol for cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. Amini, M.H. Kafshdouzsani, A. Akbari, S. Gautam, C.H. Shim, K.H. Chae, Applied. Appl. Organomet. Chem. 32, 9 (2018). https://doi.org/10.1002/aoc.4470

    Article  CAS  Google Scholar 

  2. F.G. Da Silva, J. Depeyrot, A.F. Campos, R. Aquino, D. Fiorani, D. Peddis, J. Nanosci. Nanotechnol. 19, 8 (2019). https://doi.org/10.1166/jnn.2019.16877

    Article  CAS  Google Scholar 

  3. M. Saini, R. Shukla, S.K. Singh, J. Inorg. Organomet. Polym. 29, 6 (2019). https://doi.org/10.1007/s10904-019-01163-7

    Article  CAS  Google Scholar 

  4. A. Kmita, J. Żukrowski, K. Hodor, H. Smogór, M. Sikora, Metalurgija 56, 1–2 (2017)

    Google Scholar 

  5. M.T. Satici, A.S. Sarac, Int. J. Polym. Mater. Polym. 64, 11 (2015). https://doi.org/10.1080/00914037.2014.996709

    Article  CAS  Google Scholar 

  6. G. Bisht, M.G.H. Zaidi, S. Rayamajhi, Int. J. Polym. Mater. Polym. 66, 14 (2017). https://doi.org/10.1080/00914037.2016.1263949

    Article  CAS  Google Scholar 

  7. A. Hashim, I.R. Agool, K.J. Kadhim, J. Mater. Sci. 29, 12 (2018). https://doi.org/10.1007/s10854-018-9095-z

    Article  CAS  Google Scholar 

  8. A. Józefczak, K. Kaczmarek, T. Hornowski, M. Kubovčíková, Z. Rozynek, M. Timko, A. Skumiel, Appl. Phys. Lett. 108, 26 (2016). https://doi.org/10.1063/1.4955130

    Article  CAS  Google Scholar 

  9. X. Shi, C. Xiang, Y. Liu, H. Lin, Y. Xu, J. Ji, J. Appl. Polym. Sci. 134, 31 (2017). https://doi.org/10.1002/app.45076

    Article  CAS  Google Scholar 

  10. A. Kovalenko, R.S. Yadav, J. Pospisil, O. Zmeskal, D. Karashanova, P. Heinrichova, M. Vala, J. Havlica, M. Weiter, Org. Electron. 39, 4 (2016). https://doi.org/10.1016/j.orgel.2016.09.033

    Article  CAS  Google Scholar 

  11. S.D. Raut, V.V. Awasarmol, B.G. Ghule, S.F. Shaikh, S.K. Gore, R.P. Sharma, P.P. Pawar, R.S. Mane, Mater. Res. Express. 5, 6065035 (2018). https://doi.org/10.1088/2053-1591/aac99d

    Article  CAS  Google Scholar 

  12. S.I. Ohkoshi, A. Namai, M. Yoshikiyo, K. Imoto, K. Tamazaki, K. Matsuno, O. Inoue, T. Ide, K. Masada, M. Goto, T. Goto, Angew. Chem. Int. Ed. 55, 38 (2016). https://doi.org/10.1002/anie.201604647

    Article  CAS  Google Scholar 

  13. K. Omri, N. Alonizan, J. Inorg. Organomet. Polym. Mater. 29, 1 (2019). https://doi.org/10.1007/s10904-018-0979-4

    Article  CAS  Google Scholar 

  14. K. Omri, A. Alyamani, L. El Mir, Appl. Phys A. 124, 2 (2018). https://doi.org/10.1007/s00339-018-1657-7

    Article  CAS  Google Scholar 

  15. K. Omri, O.M. Lemine, L. El Mir, Ceram. Int. 43, 8 (2017). https://doi.org/10.1016/j.ceramint.2017.02.091

    Article  CAS  Google Scholar 

  16. M.A. Mousa, E.A. Gomaa, M. Khairy, M.E. Eltanany, J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-019-01200-5

    Article  Google Scholar 

  17. P.P. Khirade, J. Nanostruct. Chem. 9, 3 (2019). https://doi.org/10.1007/s40097-019-0307-8

    Article  CAS  Google Scholar 

  18. A. Banerjee, S. Bid, H. Dutta, S. Chaudhuri, D. Das, S.K. Pradhan, Mater. Res. 15, 6 (2012). https://doi.org/10.1590/S1516-14392012005000135

    Article  CAS  Google Scholar 

  19. M.B. Tahir, T. Iqbal, A. Hassan, S. Ghazal, J. Inorg. Organomet. Polym. (2017). https://doi.org/10.1007/s10904-017-0598-5

    Article  Google Scholar 

  20. J. Kurian, M.J. Mathew, Int. J. Nanosci. 17, 1 (2018). https://doi.org/10.1142/S0219581X17600018

    Article  CAS  Google Scholar 

  21. A. Košak, D. Makovec, A. Žnidaršič, M. Drofenik, J. Eur. Ceram. Soc. 24, 6 (2004). https://doi.org/10.1016/S0955-2219(03)00524-7

    Article  CAS  Google Scholar 

  22. F. Zaaeri, M. Khoobi, M. Rouini, J.H. Akbari, Int. J. Polym. Mater. Polym. 6, 16 (2018). https://doi.org/10.1080/00914037.2017.1405348

    Article  CAS  Google Scholar 

  23. M.T. Ghahfarokhi, H. Saravani, M.R. Esmaeilzaei, J. Inorg. Organomet. Polym. (2017). https://doi.org/10.1007/s10904-017-0527-7

    Article  Google Scholar 

  24. U. Riaz, S.M. Ashraf, S. Jadoun, A. Iqbal, S. Ahmad, Int. J. Polym. Mater. Polym. 67, 16 (2018). https://doi.org/10.1080/00914037.2017.1393683

    Article  CAS  Google Scholar 

  25. R. Jayalakshmi, J. Jeyanthi, J. Inorg. Organomet. Polym. 28, 1 (2018). https://doi.org/10.1007/s10904-018-0821-z

    Article  CAS  Google Scholar 

  26. I. Szczygieł, K. Winiarska, J. Therm. Anal. Calorim. 115, 1 (2014). https://doi.org/10.1007/s10973-013-3281-2

    Article  CAS  Google Scholar 

  27. E.E. Ateia, D.E. El-Nashar, R. Ramadan, M. Farag Shokry, J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-019-01237-6

    Article  Google Scholar 

  28. S.P. Pujari, L. Scheres, A.T. Marcelis, H. Zuilhof, Angew. Chem. Int. Ed. 53, 25 (2014). https://doi.org/10.1002/anie.201306709

    Article  CAS  Google Scholar 

  29. F. Hyder, S. Manjura Hoque, Contrast. Media. Mol. (2017). https://doi.org/10.1155/2017/6387217

    Article  Google Scholar 

  30. B. Freddie, F. Jacques, S. Isabelle, S. Rebecca, T. Lindsey, J. Ahmedin, CA: Cancer J. Clin. 68, 6 (2018). https://doi.org/10.3322/caac.21492

    Article  CAS  Google Scholar 

  31. Y. Du, X. Liu, Q. Liang, X.J. Liang, J. Tian, Nano Lett. 19, 6 (2019). https://doi.org/10.1021/acs.nanolett.9b00630

    Article  CAS  Google Scholar 

  32. M. Amiri, M. Salavati-Niasari, A. Akbari, Adv. Colloid Interface Sci. (2019). https://doi.org/10.1016/j.cis.2019.01.003

    Article  PubMed  Google Scholar 

  33. H.B. Na, I.C. Song, T. Hyeon, Adv. Mater. 21, 21 (2009). https://doi.org/10.1002/adma.200802366

    Article  CAS  Google Scholar 

  34. D.S. Pereira, B.D. Cardoso, A.R.O. Rodrigues, C.O. Amorim, V.S. Amaral, B.G. Almeida, M.-J.R.P. Queiroz, O. Martinho, F. Baltazar, R.C. Calhelha, I.C.F.R. Ferreira, P.J.G. Coutinho, E.M.S. Castanheira, Pharmaceutics 11, 9 (2019). https://doi.org/10.3390/pharmaceutics11090477

    Article  CAS  Google Scholar 

  35. K.K. Kefeni, T.A. Msagati, B.B. Mamba, Mater. Sci. Eng. B (2017). https://doi.org/10.1016/j.mseb.2016.11.002

    Article  Google Scholar 

  36. L.L. Colombo, S.I. Vanzulli, A. Blázquez-Castro, C.S. Terrero, J.C. Stockert, Biomed. Opt. Express 10, 6 (2019). https://doi.org/10.1364/BOE.10.002932

    Article  Google Scholar 

  37. K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich, Lasers Med. Sci. 24, 2 (2009). https://doi.org/10.1007/s10103-008-0539-1

    Article  Google Scholar 

  38. D. Jaque, L.M. Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J.L. Plaza, E.M. Rodríguez, J.G. Solé, Nanoscale 6, 16 (2014). https://doi.org/10.1039/C4NR00708E

    Article  Google Scholar 

  39. L. Bingqiang, S. Meng, D. Xiang, G. Chu, Z. Lihua, W. Yanming, W. Guolin, RSC Adv. 7, 48 (2017). https://doi.org/10.1039/C7RA04254J

    Article  Google Scholar 

  40. S. Naqvi, M. Samim, A.K. Dinda, Z. Iqbal, S. Telagoanker, G.J. Ahmed, A. Maitra, Recent Pat. Drug. Deliv. Formul. 3, 153 (2009)

    Article  CAS  Google Scholar 

  41. T.J. Yu, P.H. Li, T.W. Tseng, Y.C. Chen, Nanomedicine 6, 10 (2011)

    Article  Google Scholar 

  42. H. Peng, S. Tang, Y. Tian, R. Zheng, L. Zhou, W. Yang, Syst. Charact. 33, 12 (2016)

    Google Scholar 

  43. E. Bagheri, F. Hajiaghaalipour, S. Nyamathulla, N. Salehen, Drug Des. Dev Therapy (2018). https://doi.org/10.2147/DDDT.S155115

    Article  Google Scholar 

  44. P. Bruno, Y. Liu, G. Young, J. Murai, C. Koch, T. Eisen, J. Pritchard, Y. Pommier, S. Lippard, M. Hemann, Nat. Med. 23, 4 (2017). https://doi.org/10.1038/nm.4291

    Article  CAS  Google Scholar 

  45. M. Zafeera, F. Firdausa, F. Ahmad, R. Ullah, E. Anisa, M. Waseemd, A. Alia, M. Hossain, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.082

    Article  Google Scholar 

  46. D. Guo, X. Ji, F. Peng, Y. Zhong, B. Chu, Y. Su, Y. He, Nano-Micro Lett. 11, 27 (2019). https://doi.org/10.1007/s40820-019-0257-1

    Article  CAS  Google Scholar 

  47. H.M. Kamari, M.G. Naseri, E.B. Saion, Metals 4, 2 (2014). https://doi.org/10.3390/met4020118

    Article  CAS  Google Scholar 

  48. P. Gairola, L.P. Purohit, S.P. Gairola, P. Bhardwaj, S. Kaushik, Prog. Nat. Sci. Mater. 29, 2 (2019). https://doi.org/10.1016/j.pnsc.2019.03.011

    Article  CAS  Google Scholar 

  49. M.G. Naseri, E. Saion, N.K. Zadeh, Int. Nano Lett. 3, 19 (2013). https://doi.org/10.1186/2228-5326-3-19

    Article  CAS  Google Scholar 

  50. R.H. Kodama, A.E. Berkowitz, J.E.J. McNiff, S. Foner, Phys. Rev. Lett. (1996). https://doi.org/10.1103/Phys.Rev.Lett.77.394

    Article  PubMed  Google Scholar 

  51. R.A. Garcia-León, E.N. Flórez-Solano, C.H. Acevedo-Peñaloza, Rev. Fac. Ing. Univ. Antioquia (2018). https://doi.org/10.17533/udea.redin.n87a04

    Article  Google Scholar 

  52. T. Gutul, E. Rusu, N. Condur, V. Ursaki, E. Goncearenco, P. Vlazan, Beilstein J. Nanotechnol. 5, 1 (2014). https://doi.org/10.3762/bjnano.5.47

    Article  CAS  Google Scholar 

  53. P. Kumar, A. Nagarajan, P.D. Uchil, Cold. Spring Harb. Protoc. 2018, 6 (2018). https://doi.org/10.1101/pdb.prot095505

    Article  Google Scholar 

  54. N. Singh, H. Lai, Mutat. Res. Fund. Mol. Mech. Mutag. 400(1–2), 313–320 (1998). https://doi.org/10.1016/S0027-5107(98)00017-7

    Article  CAS  Google Scholar 

  55. J. Li, J. Yang, T.-N. Yang, Y.-L. Zhang, Z.-S. Li, S.-H. Wang, J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01489-7

    Article  Google Scholar 

  56. K. Aljarrah, N.M. Mhaidat, M.A.H. Al-Akhras, A.N. Aldaher, B.A. Albiss, K. Aledealat, F.M. Alsheyab, World J. Surg. Oncol. 10, 1 (2012). https://doi.org/10.1186/1477-7819-10-62

    Article  Google Scholar 

  57. H. Bassiony, S. Sabet, T.A.S. El-Din, M.M. Mohamed, A.A. El-Ghor, PLoS ONE 9, 11 (2014). https://doi.org/10.1371/journal.pone.0111960

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid S. Jabir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kareem, S.H., Naji, A.M., Taqi, Z.J. et al. Polyvinylpyrrolidone Loaded-MnZnFe2O4 Magnetic Nanocomposites Induce Apoptosis in Cancer Cells Through Mitochondrial Damage and P53 Pathway. J Inorg Organomet Polym 30, 5009–5023 (2020). https://doi.org/10.1007/s10904-020-01651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01651-1

Keywords

Navigation