Abstract
Optimization solvers include many options that allow users to control algorithmic aspects that may have a considerable impact on solver performance. Tuning solver options is often necessary to reduce execution time and improve solution quality. Previous studies of solver tuning techniques have focused on mixed-integer linear programming and local nonlinear programming solvers. In this paper, we investigate the potential of tuning a global optimization solver for nonlinear and mixed-integer nonlinear programming problems. In particular, derivative-free optimization (DFO) algorithms are used to find optimal values for options of the global optimization solver BARON. A set of 126 problems from the GLOBALLib and MINLPLib collections are utilized in a computational study from which we conclude that tuning options can improve the default performance of BARON for individual problems and an entire library. Additionally, we present a systematic comparison of 27 DFO solvers in terms of their ability to improve the performance of the global solver. We find that several DFO implementations are much better than others in terms of finding optimal tuning parameters.







Similar content being viewed by others
References
Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17, 188–217 (2006)
Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. Soc. Ind. Appl. Math. 17, 642–664 (2001)
Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24, 485–504 (2009)
Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21, 311–323 (2002)
Baz, M., Hunsaker, B.: Automated Tuning of Optimization Software Parameters. Technical report. Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA (2007)
Baz, M., Hunsaker, B., Prokopyev, O.: How much do we “pay” for using default parameters? Comput. Optim. Appl. 48, 91–108 (2011)
Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib-A collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15, 114–119 (2003)
Chen, W., Shao, Z., Wang, K., Chen, X., Biegler, L.T.: Random sampling-based automatic parameter tuning for nonlinear programming solvers. Ind. Eng. Chem. Res. 50, 3907–3918 (2011)
Conn, A.R., Scheinberg, K., Toint, P.L.: On the convergence of derivative-free methods for unconstrained optimization. In: Buhmann, M.D., Iserles, A. (eds.) Approximation Theory and Optimization, Tribute to M. J. D. Powell, pp. 83–108. Cambridge University Press, Cambridge (1996)
Custódio, A.L., Dennis Jr., J.E., Vicente, L.N.: Using simplex gradients of nonsmooth functions in direct search methods. IMA J. Numer. Anal. 28, 770–784 (2008)
Fan, S.S., Zahara, E.: A hybrid simplex search and particle swarm optimization for unconstrained optimization. Eur. J. Oper. Res. 181, 527–548 (2007)
Fowler, K.R., Reese, J.P., Kees, C.E., Dennis Jr., J.E., Kelley, C.T., Miller, C.T., Audet, C., Booker, A.J., Couture, G., Darwin, R.W., Farthing, M.W., Finkel, D.E., Gablonsky, J.M., Gray, G., Kolda, T.G.: A comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems. Adv. Water Resour. 31, 743–757 (2008)
GLOBAL Library. http://www.gamsworld.org/global/globallib.htm. Accessed 25 Feb 2018
Gutmann, H.M.: A radial basis function method for global optimization. J. Glob. Optim. 19, 201–227 (2001)
Han, J., Kokkolaras, M., Papalambros, P.Y.: Optimal design of hybrid fuel cell vehicles. J. Fuel Cell Sci. Technol. 5, 041014 (2008)
Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on local search. In: Howe, A., Holte, R.C. (eds.) Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1152–1157. AAAI Press, Menlo Park, CA (2007)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. LNCS 6140, 186–202 (2010)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configurations. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization, pp. 507–523. Springer, Berlin (2011)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an antomatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)
Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–355 (1999)
Hvattum, L.M., Glover, F.: Finding local optima of high-dimensional functions using direct search methods. Eur. J. Oper. Res. 195, 31–45 (2009)
Ingber, L.: Adaptive Simulated Annealing (ASA). http://www.ingber.com/#ASA. Accessed 25 Feb 2018
Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)
Liu, M.L., Sahinidis, N.V., Shectman, J.P.: Planning of chemical process networks via global concave minimization. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design, pp. 195–230. Kluwer Academic Publishers, Boston (1996)
Mongeau, M., Karsenty, H., Rouzé, V., Hiriart-Urruty, J.B.: Comparison of public-domain software for black box global optimization. Optim. Methods Softw. 13, 203–226 (2000)
Moré, J.M., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM. J. Optim. 20(1), 172–191 (2009)
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.) Advances in Optimization and Numerical Analysis, pp. 51–67. Kluwer Academic, Dordrecht (1994)
Powell, M.J.D.: Recent research at Cambridge on radial basis functions. Technical report. Department of Applied Mathematics and Theoretical Physics, University of Cambridge (1998)
Puranik, Y., Sahinidis, N.V.: Bounds tightening based on optimality conditions for nonconvex box-constrained optimization. J. Glob. Optim. 67, 59–77 (2017)
Puranik, Y., Sahinidis, N.V.: Domain reduction techniques for global NLP and MINLP optimization. Constraints 22, 338–376 (2017)
Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56, 1247–1293 (2013)
Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19, 551–566 (1995)
Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–139 (1996)
Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)
Sahinidis, N.V.: Global optimization and constraint satisfaction: the branch-and-reduce approach. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction. Lecture Notes in Computer Science, vol. 2861, pp. 1–16. Springer, Berlin (2003)
Sahinidis, N.V.: BARON 15.5.0: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2015)
Shectman, J.P., Sahinidis, N.V.: A finite algorithm for global minimization of separable concave programs. J. Glob. Optim. 12, 1–36 (1998)
Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential application for simplex designs in optimisation and evolutionary operation. Technometrics 4, 441–461 (1962)
Stewart, C.R.: Master’s thesis. Vriginia Commonwealth University, Richmond, VA (2010)
Tawarmalani, M., Ahmed, S., Sahinidis, N.V.: Product disaggregation and relaxations of mixed-integer rational programs. Optim. Eng. 3, 281–303 (2002)
Tawarmalani, M., Sahinidis, N.V.: Convex extensions and convex envelopes of l.s.c. functions. Math. Program. 93, 247–263 (2002)
Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)
Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)
Torczon, V.J.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)
Vaz, A.I.F.: PSwarm Home Page. http://www.norg.uminho.pt/aivaz/pswarm/. Accessed 25 Feb 2018
Vaz, A.I.F., Vicente, L.N.: A particle swarm pattern search method for bound constrained global optimization. J. Glob. Optim. 39, 197–219 (2007)
Zorn, K., Sahinidis, N.V.: Global optimization of general nonconvex problems with intermediate bilinear substructures. Optim. Methods Softw. 29, 442–462 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, J., Ploskas, N. & Sahinidis, N.V. Tuning BARON using derivative-free optimization algorithms. J Glob Optim 74, 611–637 (2019). https://doi.org/10.1007/s10898-018-0640-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-018-0640-3