[go: up one dir, main page]

Skip to main content
Log in

Mechanism of grain growth and excellent polarization, dielectric relaxtion of La3+, Nd3+ modified PZT nano-films prepared by sol–gel technique

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferroelectric PbZr0.52Ti0.48O3 film and its partial substitutions by rare earth ions La3+ and Nd3+ Pb0.9(La/Nd)0.1Zr0.52Ti0.48O3, grown on Pt(111)/Ti/SiO2/Si(100) substrates, were prepared via sol–gel and rapid thermal processes. Structural characterization by X-ray diffraction and scanning electron microscopy showed that Pb(Zr0.52Ti0.48)O3 and Pb0.9La0.1(Zr0.52Ti0.48)O3 films are of (111) preferred orientation but Pb0.9Nd0.1(Zr0.52Ti0.48)O3 is more inclined to (100) reflection though both are of tetragonal perovskite structure. The results indicate that the piezoelectric properties of PZT thin films can be improved by doping La3+ and Nd3+ substituted A-site. The d33 can be dramatically improved by doping La3+. Moreover, Pr of Pb(Zr0.52Ti0.48)O3 films reaches up to 120.53 µC/cm2, while the doping samples present relatively inferior ferroelectric hysteresis loops (PrLa = 64.32, PrNd = 53.17 µC/cm2), greater dielectric constants, higher dielectric loss and lower leakage current than the undoped Pb(Zr0.52Ti0.48)O3 sample. And meanwhile, the samples showed a typical non-Debye dielectric spectroscopy of multiple quantum relaxation time distribution observing from the Cole–Cole plot at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Coondoo, A.K. Jha, S.K. Agarwal, Enhancement of dielectric characteristics in donor doped Aurivillius SrBi2Ta2O9 ferroelectric ceramics. J. Eur. Ceram. Soc. 27, 253–260 (2007)

    Article  CAS  Google Scholar 

  2. P.-H. Xiang, Y. Kinemuchi, K. Watari, Preparation of c-axis-oriented Bi4Ti3O12 thick films by templated grain growth. J. Eur. Ceram. Soc. 27, 663–667 (2007)

    Article  CAS  Google Scholar 

  3. T. Xu, C.-A. Wang, Effect of two-step sintering on micro-honeycomb BaTiO3 ceramics prepared by freeze-casting process. J. Eur. Ceram. Soc. 32(10), 2647–2652 (2016)

    Article  Google Scholar 

  4. K. Guo, R. Zhang, T. He et al., Multiferroic and in-plane ME coupling properties of BiFeO3 nano-films with substitution of rare earth ions La3+ and Nd3+. J. Rare Earths 34(12), 1228–1233 (2016)

    Article  CAS  Google Scholar 

  5. D.H. Minh, N.V. Loi, N.H. Duc et al., Low-temperature PZT thin-film ferroelectric memories fabricated on SiO2/Si and glass substrates. J. Sci. 1, 75–79 (2016)

    Google Scholar 

  6. K. Guo, Q. Mou, T. He et al., Ferroelectric, ferromagnetic, magnetodielectric and in-plane ME coupling properties of Pb(Zr0.52Ti0.48)O3-Bi0.9Nd0.1FeO3 bilayer nano-films prepared via sol-gel processing. J. Mater. Sci. Mater. Electron. 28(2), 1971–1975 (2016)

    Article  Google Scholar 

  7. N. Kitamura, T. Mizoguchi, T. Itoh et al., Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O3. J. Solid State Chem. 210, 275–279 (2014)

    Article  CAS  Google Scholar 

  8. S. Dutta, A.A. Jeyaseelan, S. Sruthi, Ferroeletric and piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film. Thin Solid Films 562, 190–194 (2014)

    Article  CAS  Google Scholar 

  9. D. Wang, X. Zhu, J. Liang et al., Electrohydrodynamic jet printing of PZT thick film micro-scale structures. J. Eur. Ceram. Soc. 35, 3475–3483 (2015)

    Article  CAS  Google Scholar 

  10. T. Kainz, B. Bitschnau, F.A. Mautner et al., Comparison of lanthanum and bismuth modification of lead zirconate-lead titanate PZT-A structural and dielectric study. J. Eur. Ceram. Soc. 36, 507–514 (2016)

    Article  CAS  Google Scholar 

  11. W. Liu, N. Li, Y. Wang et al., Preparation and properties of 3–1 type PZT ceramics by a self-organization method. J. Eur. Ceram. Soc. 35, 3467–3474 (2015)

    Article  CAS  Google Scholar 

  12. M. Prabu, I.S. Banu, S. Gobalakrishnan et al., Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol-gel method. J. Alloy Compds. 551, 200–207 (2013)

    Article  CAS  Google Scholar 

  13. J.S. Cross, K. Shinozaki, T. Yoshioka et al., Characterization and ferroelectricity of Bi and Fe co-doped PZT films. Mat. Sci. Eng. B 173, 18–20 (2010)

    Article  CAS  Google Scholar 

  14. U. Helbig, Size effect in low grain size neodymium doped PZT ceramics. J. Eur. Ceram. Soc. 27, 2567–2576 (2007)

    Article  CAS  Google Scholar 

  15. C. Pientschke, A. Kuvatov, R. Steinhausen et al., Bipolar strain hysteresis of poled composites with Nd- Mn-doped PZT fibres. J. Eur. Ceram. Soc. 29, 1713–1720 (2009)

    Article  CAS  Google Scholar 

  16. S.R. Shannigrahi, F.E.H. Tay, K. Yao et al., Effect of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) ion substitutions on the microstructural and electrical properties of sol-gel grown PZT ceramics. J. Eur. Ceram. Soc. 24, 163–170 (2004)

    Article  CAS  Google Scholar 

  17. V. Kayasu, M. Ozenbas. The effect of Nb doping on dielectric and ferroelectric properties of PZT thin films prepared by solution deposition. J. Eur. Ceram. Soc. 29, 1157–1163 (2009)

    Article  CAS  Google Scholar 

  18. J.K. Juneja, S. Singh, K.K. Raina et al., Study on structural, dielectric, ferroelectric and piezoelectric properties of Ba doped lead zirconate titanate ceramics. J. Phys. B 431, 109–114 (2013)

    Article  Google Scholar 

  19. C. Bedoya, C. Muller, J.L. Baudour et al., Sr-doped PbZr1−xTixO3 ceramic: structural study and field-induced reorientation of ferroelectric domains. Mat. Sci. Eng. B 75, 43–52 (2000)

    Article  Google Scholar 

  20. F. Zhu, J. Qiu, H. Ji et al., Comparative investigations on dielectric, piezoelectric properties and humidity resistance of PZT–SKN and PZT–SNN ceramics. J. Mater. Sci. Mater. Electron. 26(5), 2897–2904 (2015)

    Article  CAS  Google Scholar 

  21. A. Cottrell, An Introduction to Metallurgy (Maney Publishing, London, 1967), pp. 134–147

    Google Scholar 

  22. S.A.S. Rodrigues, A.G. Rolo, A. Khodorov et al., Determination of residual stress in PZT films produced by laser ablation with X-ray diffraction and Raman spectroscopy. J. Eur. Ceram. Soc. 30, 521–524 (2010)

    Article  CAS  Google Scholar 

  23. P. Gonnard, M. Troccaz, Dopant distribution between A and B sites in the PZT ceramics of types ABO3. J. Solid State Chem. 23, 321–326 (1978)

    Article  CAS  Google Scholar 

  24. J.A. Dean, Lange’s Chemistry Handbook, Version 16th (McGraw-Hill Professional, New York, 2007), pp. 90–98

    Google Scholar 

  25. D. Wang, S.A. Rocks, R.A. Dorey, Electrohydrodynamic atomization deposition of PZT sol–gel slurry and sol infiltration on the films. J. Eur. Ceram. Soc. 32, 1651–1658 (2012)

    Article  CAS  Google Scholar 

  26. D. Fasquelle, J.C. Carru, Electrical characterizations of PZT ceramics in large frequency and temperature ranges. J. Eur. Ceram. Soc. 28, 2071–2074 (2008)

    Article  CAS  Google Scholar 

  27. J Fialka, P. Benes, L. Michlovska et al., Measurement of thermal depolarization effects in piezoelectric coefficients of soft PZT ceramics via the frequency and direct methods. J. Eur. Ceram. Soc. 36, 2727–2738 (2016)

    Article  CAS  Google Scholar 

  28. J.-W. Kim, J.G. Heinrich, Influence of processing parameters on microstructure and ferroelectric properties of PZT-coated SiC fibers. J. Eur. Ceram. Soc. 25, 1637–1645 (2005)

    Article  CAS  Google Scholar 

  29. G.D. Dwivedi, Low temperature magnetic and transport properties of LSMO-PZT nanocomposites. RSC Adv. 5(39), 30748–30757 (2015)

    Article  CAS  Google Scholar 

  30. H.-H. Park, H.-H. Park, R.H. Hill, Stacking effect on the ferroelectric properties of PZT/PLZT multilayer thin films formed by photochemical metal-organic deposition. Appl. Surf. Sci. 237, 427–432 (2004)

    Article  CAS  Google Scholar 

  31. K. Franke, J. Besold, W. Haessler et al., Modification and detection of domains on ferroelectric PZT films by scanning force microscopy. Surf. Sci. 302(s1–2), L283–L288 (1994)

    Article  CAS  Google Scholar 

  32. Y.L. Tu, S.J. Milne, A study of the effects of process variables on the properties of PZT films produced by a single-layer sol-gel technique. J. Mater. Sci. 30(10), 2507–2516 (1995)

    Article  CAS  Google Scholar 

  33. K. Vojisavljević, G. Branković, T. Srećković et al., Preparation of ultrathin PZT films by a chemical solution deposition method from a polymeric citrate precursor. J. Eur. Ceram. Soc. 30, 485–488 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51762009), the Education Department of Guizhou Province (No. 2017-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yi Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zheng, DY., Guo, KX. et al. Mechanism of grain growth and excellent polarization, dielectric relaxtion of La3+, Nd3+ modified PZT nano-films prepared by sol–gel technique. J Mater Sci: Mater Electron 29, 18011–18019 (2018). https://doi.org/10.1007/s10854-018-9974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9974-3

Navigation