Abstract
In the last decade, as semiconductor industry was approaching the end of the exponential Moore’s roadmap for device downscaling, the necessity of finding new candidate materials has forced many research groups to explore many different types of non-conventional materials. Among them, graphene, CNTs and organic conductors are the most successful alternatives. Finding a material with metallic properties combined with field effect characteristics on nanoscale level has been always a dream to continue the ever-shrinking road of the nanoelectronics. Due to its fantastic features such as high mobility, optical transparency, room temperature quantum Hall effect, mechanical stiffness, etc. the atomically thin carbon layer, graphene, has attracted the industry’s attention not only in the micro-, nano-, and opto-electronics but also in biotechnology. This paper reviews the basics and previous works on graphene technology and its developments. Compatibility of this material with Si processing technology is its crucial characteristic for mass production. This study also reviews the physical and electrical properties of graphene as a building block for other carbon allotropes. Different growth methods and a wide range of graphene’s applications will be discussed and compared. A brief comparison on the performance result of different types of devices has also been presented. Until now, the main focus of research has been on the background physics and its application in electronic devices. But, according to the recent works on its applications in photonics and optoelectronics, where it benefits from the combination of its unique optical and electronic properties, even without a bandgap, this material enables ultrawide-band tunability. Here in this article we review different applications and graphene’s advantages and drawbacks will be mentioned to conclude at the end.





























































Similar content being viewed by others
References
V. Eswaraiah, S.S.J. Aravind, S. Ramaprabhu, Top–down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem. 21(19), 6800 (2011)
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)
K.W.C. Lai, C.K.M. Fung, H. Chen, R. Yang, B. Song, N. Xi, Fabrication of graphene devices for infrared detection. IEEE Nanotechnology Materials and Devices Conference, pp. 14–17 (2010)
G. Liu, A.A. Balandin, Tuning of graphene properties via controlled exposure to electron beams. IEEE Trans. Nanotechnol. 10(4), 865–870 (2011)
C. Baatar, Promises of graphene nanoelectronics, in Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, 2008, vol. 3, p. 190
J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3(4), 206–209 (2008)
K. Bolotin, K. Sikes, Z. Jiang, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)
C. Y. Sung, Graphene nanoelectronics. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, 40, 1–2 (2009)
K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.K.I. Grigorieva, S.V. Dubonos, A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)
S. Vaziri, Fabrication and characterization of graphene field effect transistors, Master thesis at Royal Institute of Technology KTH, 2011
S. Kim, J. Ihm, H.J. Choi, Y.W. Son, Origins of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100(17), 176802 (2008)
F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P.M. Ajayan, N. Koratkar, Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 6(22), 2535–2538 (2010)
T. Gokus, R.R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12), 3963–3968 (2009)
M.G. Ancona, Electron transport in graphene from a diffusion-drift perspective. IEEE Trans. Electron. Device. 57(3), 681–689 (2010)
G. S. Kliros, Quantum capacitance of bilayer graphene, in CAS 2010 Proceedings (international semiconductor conference), 2010(1), 69–72
G.M. Rutter, S. Jung, N.N. Klimov, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011)
G. Fiori, G. Iannaccone, On the possibility of tunable-gap bilayer graphene FET. IEEE Electron. Device Lett. 30(3), 261–264 (2009)
A. Avetisyan, B. Partoens, F. Peeters, Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81(11), 115432 (2010)
Web address: http://www.sciencedaily.com/releases/2009/06/090610133453.htm, pp. 6–9, 2012
G. Rutter, S. Jung, N. Klimov, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011)
Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009)
V. Barone, O. Hod, G.E.G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)
M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007)
C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, D. Jena, Quantum transport in patterned graphene nanoribbons. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, pp. 1–2, (2009)
F. Xia, D.B.D.B. Farmer, Y.-M. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10(2), 715–718 (2010)
N. Jung, N. Kim, S. Jockusch, N.J. Turro, P. Kim, L. Brus, Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9(12), 4133 (2009)
M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10(1), 20–27 (2007)
S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(2000), 4613–4616 (2000)
T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri, Structure, stability, edge states and aromaticity of graphene ribbons. Phys. Rev. Lett. 101(9), 96402 (2008)
F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)
M. Dragoman, D. Dragoman, A. Muller, High frequency devices based on graphene. In Semiconductor Conference, 2007. CAS 2007. International, pp. 53–56 (2007)
R. Shishir, D. Ferry, S. Goodnick, Intrinsic mobility limit in graphene at room temperature. In Nanotechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on, 8, 21–24 (2009)
Z. Tao, Y. Sheng-ke, Z. Min, Z. Yue, C. Jing, The research of preparation and catalytic property of the titanium plate which loaded with the graphene modified SnO2. Water Resour. Environ. Prot. (ISWREP) Int. Symp. 2, 1501–1503 (2011)
A. Lherbier, X. Blase, Y.M. Niquet, F. Triozon, S. Roche, Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101(3), 36808 (2008)
R. Murali, K. Brenner, Y. Yang, T. Beck, J.D. Meindl, Resistivity of graphene nanoribbon (GNR) interconnects. Electron. Device Lett. IEEE 30(6), 611–613 (2009)
M. Clavel, T. Poiroux, M. Mouis, L. Becerra, J.L. Thomassin, A. Zenasni, G. Lapertot, D. Rouchon, D. Lafond, O. Faynot, Influence of annealing temperature on the performance of graphene/SiC transistors with high-k/metal gate. In Ulis 2011 Ultimate Integration on Silicon International Conference on Ultimate Integration of Silicon: ULIS, 2011, 2011, pp. 1–4
H. Cheng, Development of graphene-based materials for energy storage. In Vacuum Electron Sources Conference and Nanocarbon (IVESC), 2010 8th International, 2010, 3187(2010), 49
D. Elias, R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim et al., Control of graphene’s properties by reversible hydrogenation. Science 323(5914), 610–613 (2009)
A. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)
Y. Yang, R. Murali, Impact of size effect on graphene nanoribbon transport. Electron. Device Lett. IEEE 31(3), 237–239 (2010)
K. Bolotin, K. Sikes, J. Hone, H. Stormer, P. Kim, Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008)
A.A. Balandin, Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)
M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6(1), 42–60 (2011)
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)
Y. Shi, K.K. Kim, A. Reina, M. Hofmann, L.J. Li, J. Kong, Work function engineering of graphene electrode via chemical doping. ACS Nano 4(5), 2689–2694 (2010)
L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, A. Geim, Chaotic dirac billiard in graphene quantum dots. Science 320(5874), 356–358 (2008)
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)
M. Cox, A. Gorodetsky, B. Kim, K.S. Kim, Z. Jia, P. Kim, C. Nuckolls, I. Kymissis, Single-layer graphene cathodes for organic photovoltaics. Appl. Phys. Lett. 98(12), 123303 (2011)
K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Observation of an electric-field induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102(25), 256405 (2009)
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)
W. Deng, W.A. Goddard, J. Che, C. Tahir, Thermal conductivity of diamond and related materials from molecular dynamics simulations. J. Chem. Phys. 113(16), 6888–6900 (2000)
A.A.K. Geim, A.H.A. MacDonald, Graphene: exploring carbon flatland. Phys. Today 60(8), 35–41 (2007)
A. Kathalingam, V. Senthilkumar, J.-K. Rhee, Hysteresis I–V nature of mechanically exfoliated graphene FET. J. Mater. Sci. Mater. Electron. 25(3), 1303–1308 (2014)
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)
K. Choi, A. Ali, J. Jo, Randomly oriented graphene flakes film fabrication from graphite dispersed in N-methyl-pyrrolidone by using electrohydrodynamic atomization technique. J. Mater. Sci. Mater. Electron. 24(12), 4893–4900 (2013)
Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)
D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem. 21(10), 3428 (2011)
X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)
V. Alzari, D. Nuvoli, S. Scognamillo, Graphene-containing thermoresponsive nanocomposite hydrogels of poly (N-isopropylacrylamide) prepared by frontal polymerization. J. Mater. Chem. 21(24), 8727 (2011)
M. Choucair, P. Thordarson, J. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 2–5 (2008)
H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)
M. Ali-Umar, C. Yap, R. Awang, M. Hj-Jumali, M. Mat-Salleh, M. Yahaya, Characterization of multilayer graphene prepared from short-time processed graphite oxide flake. J. Mater. Sci. Mater. Electron. 24(4), 1282–1286 (2013)
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. (NY) 45(7), 1558–1565 (2007)
A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, N.S. Hosmane, Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21(26), 9491 (2011)
L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5(5), 321–325 (2010)
L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature. 458, 877–880 (2009)
D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)
K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)
C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010)
P. Macháč, T. Fidler, S. Cichoň, V. Jurka, Synthesis of graphene on Co/SiC structure. J. Mater. Sci. Mater. Electron. 24(10), 3793–3799 (2013)
H. Huang, W. Chen, S. Chen, A.T.S. Wee, A. Thye, S. Wee, Bottom–up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2(12), 2513–2518 (2008)
K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature. Mater. 8(3), 203–207 (2009)
S. Amini, J. Garay, G. Liu, A.A. Balandin, R. Abbaschian, Growth of large-area graphene films from metal–carbon melts. J. Appl. Phys. 108(9), 94321 (2010)
J. Hofrichter, B.N. Szafranek, M. Otto, T.J. Echtermeyer, M. Baus, A. Majerus, V. Geringer, M. Ramsteiner, H. Kurz, Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett. 10(1), 36–42 (2010)
A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer, J. Kong, Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2, 509–516 (2009)
A. Reina, X. Jia, J. Ho, D. Nezich, V. Bulovic, M.S. Dresselhaus, J. Kong, H. Son, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)
Z. Juang, C.-Y. Wu, A.-Y. Lu, C.-Y. Su, K. Leou, F.-R. Chen, C.-H. Tsai, Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon. (NY) 48(11), 3169–3174 (2010)
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, W. Cai, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)
J. Sun, N. Lindvall, M. Cole, Low partial pressure chemical vapor deposition of graphene on copper. IEEE Trans. Nanotechnol. 11(2), 255–260 (2012)
A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon. (NY) 49(13), 4204–4210 (2011)
Y. S. Kim, J. H. Lee, S.-K. Jerng, E. Kim, S. Seo, J. Jung, S.-H. Chun, Y. Seung, and J. Hong, “H 2 -free synthesis of monolayer graphene with controllable grain size by plasma enhanced chemical vapor deposition,” Nanoscale, 2013
J. Fan, T. Li, Y. Gao, J. Wang, H. Ding, H. Heng, Comprehensive study of graphene grown by chemical vapor deposition. J. Mater. Sci. Mater. Electron. 25(10), 4333–4338 (2014)
C. Miao, C. Zheng, O. Liang, Y. Xie, Chemical vapor deposition of graphene. Phys. Appl. Graph. Exp. 37–54 (2011)
S. Thiele, A. Reina, P. Healey, J. Kedzierski, P. Wyatt, P.L. Hsu, C. Keast, J. Schaefer, J. Kong, Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21(1), 15601 (2009)
G. Nandamuri, S. Roumimov, R. Solanki, Chemical vapor deposition of graphene films. Nanotechnology 21(14), 145604 (2010)
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, C. Van Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30), 305604 (2008)
L. Jiang, X. Lu, J. Xu, Y. Chen, G. Wan, Y. Ding, Free-standing microporous paper-like graphene films with electrodeposited PPy coatings as electrodes for supercapacitors. J. Mater. Sci. Mater. Electron. 1–8 (2014)
H.K. Jeong, J.D.C. Edward, G.H. Yong, L.C. Hun, Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD). J. Korean Phys. Soc. 58(1), 53 (2011)
J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang, H.W. Tian, Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 257(15), 6531–6534 (2011)
J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, R.S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9), 6916–6924 (2011)
M.J. Allen, V.C. Tung, L. Gomez, Z. Xu, L.M. Chen, K.S. Nelson, C. Zhou, R.B. Kaner, Y. Yang, Soft transfer printing of chemically converted graphene. Adv. Mater. 21(20), 2098–2102 (2009)
L.L. Song, L. Ci, W. Gao, P.M.P.M. Ajayan, Transfer printing of graphene using gold film. ACS Nano 3(6), 1353–1356 (2009)
W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, A. Zettl, A direct transfer of layer-area graphene. Appl. Phys. Lett. 96(11), 113102 (2010)
P. Nemes-Incze, Z. Osváth, K. Kamarás, L.P. Biró, Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon. (NY) 46(11), 1435–1442 (2008)
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)
C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, H. Harutyuyan, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)
M. Wall, Raman spectroscopy optimizes graphene characterization. Adv. Mater. Process. 35–38 (2012)
A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6(12), 2667–2673 (2006)
G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)
H. Iwai, Roadmap for 22 nm and beyond (invited paper). Microelectron. Eng. 86(7–9), 1520–1528 (2009)
B. Streetman, S. Banerjee, in Solid State Electronic Devices (Prentice Hall Series in Solid State Physical Electronics). 2007
The International Technology Roadmap for Semiconductors. Available http://www.itrs.net/Links/2011ITRS/Home2011.htm (Semiconductor Industry Association, 2011)
Y. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 237, 662 (2010)
J.S. Moon, D. Curtis, M. Hu, D. Wong, C. Mcguire, P.M. Campbell, G. Jernigan, J.L. Tedesco, B. Vanmil, C. Eddy, D.K. Gaskill, Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron. Device. Lett. 30(6), 650–652 (2009)
S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 062107 (2009)
X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Room-temperature all-semiconducting Sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803 (2008)
Y. Lu, B. Goldsmith, D.R. Strachan, J.H. Lim, Z. Luo, A.T.C. Johnson, High-On/Off-ratio graphene nanoconstriction field-effect transistor. Small 6(23), 2748–2754 (2010)
M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, A graphene field-effect device. Electron. Device. Lett. IEEE 28(4), 282–284 (2007)
S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme, A graphene-based hot electron transistor. Nano Lett. 13(4), 1435–1439 (2013)
M.C. Lemme, T.J. Echtermeyer, M. Baus, B.N. Szafranek, J. Bolten, M. Schmidt, T. Wahlbrink, H. Kurz, Mobility in graphene double gate field effect transistors. Solid State Electron. 52(4), 514–518 (2008)
F. Guinea, M. I. Katsnelson, A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2010)
C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet, U. Starke, Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 81(23), 235401 (2010)
X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008)
M. Evaldsson, I. Zozoulenko, H. Xu, T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 1, 1–4 (2008)
Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Phys. E Low-Dimens Syst. Nanostruct. 40(2), 228–232 (2007)
L. Tapaszto, G. Dobrik, P. Lambin, L.P. Biro, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature. Nano 3(7), 397–401 (2008)
S.S. Datta, D.R. Strachan, S.M. Khamis, A.T.C. Johnson, Crystallographic etching of few-layer graphene. Nano Lett. 8(7), 1912–1915 (2008)
L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K.F. Kelly, B.I. Yakobson, P.M. Ajayan, Controlled nanocutting of graphene. Nano Res. 1(2), 116–122 (2008)
J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 8(9), 2773–2778 (2008)
F. Schwierz, J.J. Liou, RF transistors: recent developments and roadmap toward terahertz applications. Solid State Electron. 51(8), 1079–1091 (2007)
Y. Wu, Y. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472(7341), 74–78 (2011)
L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010)
L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10(5), 1917–1921 (2010)
J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene. Nature. Phys. 4(5), 377–381 (2008)
R.G. Gordon, Criteria for choosing transparent conductors. MRS Bull. 25(08), 52–57 (2000)
P. Matyba, H. Yamaguchi, G. Eda, K̇.M. Chhowalla, K̇̇.L. Edman, N.D. Robinson, M. Chhowalla, L. Edman, Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4(2), 637–642 (2010)
L. Jiang, X. Lu, X. Zheng, Copper/silver nanoparticle incorporated graphene films prepared by a low-temperature solution method for transparent conductive electrodes. J. Mater. Sci. Mater. Electron. 25(1), 174–180 (2014)
H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999)
Y. Park, V. Choong, Y. Gao, B.R. Hsieh, C.W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 68(19), 2699–2701 (1996)
S.T. Lee, Z.Q. Gao, L.S. Hung, Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 75(10), 1404 (1999)
I.-M. Chan, T.-Y. Hsu, F.C. Hong, Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81(10), 1899–1901 (2002)
J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43–48 (2010)
Q. Pei, A.J. Heeger, Operating mechanism of light-emitting electrochemical cells. Nat. Mater. 7, 167 (2008)
Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20(20), 3924–3930 (2008)
J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92(26), 263302 (2008)
N.M. Gabor, J.C.W. Song, Q. Ma, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, P. Jarillo-Herrero, Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011)
V.V. Cheianov, V. Fal’ko, B.L. Altshuler, The focusing of electron flow and a Veselago lens in graphene p–n junctions. Science 315(5816), 1252–1255 (2007)
V.V. Cheianov, V.I. Fal’ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene. Phys. Rev. B 74(4), 41403 (2006)
S. Tanachutiwat, J.U. Lee, W. Wang, C.Y. Sung, Reconfigurable multi-function logic based on graphene p–n junctions. In Proceedings of the 47th Design Automation Conference on DAC 10, 2010, pp. 883–888
P. Atanasov, A. Kaisheva, I. Iliev, V. Razumas, J. Kulys, Glucose biosensor based on carbon black strips. Biosens. Bioelectron. 7(5), 361–365 (1992)
S. Timur, L. Della, N. Pazarlioˇ, R. Pilloton, A. Telefoncu, Screen printed graphite biosensors based on bacterial cells. Process. Biochem. 39, 1325–1329 (2004)
Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191–195 (2004)
J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126(10), 3010–3011 (2004)
Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 2–6 (2009)
S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen, Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521–3526 (2010)
N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4469–4476 (2008)
R. Stine, J.T. Robinson, P.E. Sheehan, C.R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors. Adv. Mater. 22(46), 5297–5300 (2010)
X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649–1653 (2010)
Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25(10), 2366–2369 (2010)
Y. Hu, K. Wang, Q. Zhang, F. Li, T. Wu, L. Niu, Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 33(4), 1097–1106 (2012)
Z. Tang, H. Wu, J.R. Cort, G.W. Buchko, Y. Zhang, Y. Shao, I.A. Aksay, J. Liu, Y. Lin, Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6(11), 1205–1209 (2010)
E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay, Elisa: III. Quantitation of specific antibodies by enzyme-labled anti-immunoglobulin in antigen-coated tubes. J. Immunol. 109, 129–135 (1972)
A. Bonanni, M. Pumera, Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011)
A.H. Loo, A. Bonanni, M. Pumera, Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4(1), 143–147 (2012)
G. Lu, L.E. Ocola, J. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 083111(2009), 8–11 (2012)
H. Li, Y. Anugrah, S.J. Koester, M. Li, Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101(11), 111110 (2012)
B. Scharf, V. Perebeinos, J. Fabian, P. Avouris, Effects of optical and surface polar phonons on the optical conductivity of doped graphene. Phys. Rev. B 87(3), 35414 (2013)
N. Youngblood, C. Chen, S. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. arXiv Prepr. arXiv1409.6412, pp. 1–17, 2014
N. Haratipour, M. Robbins, S. Koester, Black phosphorus p-MOSFETs with high transconductance and nearly ideal subthreshold slope. arXiv Prepr. arXiv1409.8395, 55455, 2–4 (2014)
X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)
B. Jalali, S. Fathpour, Silicon photonics. Light. Technol. J. 24(12), 4600–4615 (2006)
Y. Vlasov, S. McNab, Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12(8), 1622–1631 (2004)
W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, R.G. Baets, Compact wavelength-selective functions in silicon-on-insulator photonic wires. Sel. Top. Quantum Electron. IEEE J. 12(6), 1394–1401 (2006)
E.J.H. Lee, K. Balasubramanian, R.T. Weitz, M. Burghard, K. Kern, Contact and edge effects in graphene devices. Nat. Nanotechnol. 3(8), 486–490 (2008)
F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. Lin, J. Tsang, V. Perebeinos, P. Avouris, Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9(3), 1039–1044 (2009)
J. Park, Y.H. Ahn, C. Ruiz-Vargas, Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9(5), 1742–1746 (2009)
X. Xu, N.M. Gabor, J.S. Alden, A.M. van der Zande, P.L. McEuen, Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10(2), 562–566 (2009)
M.C. Lemme, F.H.L. Koppens, A.L. Falk, M.S. Rudner, H. Park, L.S. Levitov, C.M. Marcus, Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11(10), 4134–4137 (2011)
A. Pospischil, M. Humer, M.M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7(11), 892–896 (2013)
T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010)
M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser et al., Microcavity-integrated graphene photodetector. Nano Lett. 12(6), 2773–2777 (2012)
J. Yan, M.H. Kim, J.A. Elle, A.B. Sushkov, G.S. Jenkins, H.M. Milchberg, M.S. Fuhrer, H.D. Drew, Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7(7), 472–478 (2012)
L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012)
S.J. Koester, M. Li, High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100(17), 171107 (2012)
A.J. Hong, E.B. Song, H.S. Yu, M.J. Allen, J. Kim, J.D. Fowler, J.K. Wassei, Y. Park, Y. Wang, J. Zou et al., Graphene flash memory. ACS Nano 5(10), 7812–7817 (2011)
H. Liu, J. Huang, C. Xiang, J. Liu, X. Li, In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 24(10), 3640–3645 (2013)
B. Meschi Amoli, J. Trinidad, A. Hu, Y.N. Zhou, B. Zhao, Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement. J. Mater. Sci. Mater. Electron. 26, 590–600 (2015)
J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 490, 2012 (2007)
X. Tao, Q. Hong, T. Xu, F. Liao, Highly efficient photocatalytic performance of graphene–Ag3VO4 composites. J. Mater. Sci. Mater. Electron. 25(8), 3480–3485 (2014)
G. Hwang, J.J.C. Acosta, E. Vela, S. Haliyo, S. Regnier, Graphene as thin film infrared optoelectronic sensor. In International Symposium on Optomechatronic Technologies (ISOT) 2009, Istanbul, pp. 169–174 (2009)
V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, T. Otsuji, Terahertz and infrared detectors based on graphene structures. Infrared Phys. Technol. 54(3), 302–305 (2011)
M.C. Lemme, Current status of graphene transistors. Solid State Phenom. 156–158, 499–509 (2009)
A.H.C. Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Akbar, F., Kolahdouz, M., Larimian, S. et al. Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J Mater Sci: Mater Electron 26, 4347–4379 (2015). https://doi.org/10.1007/s10854-015-2725-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-015-2725-9