[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the last decade, as semiconductor industry was approaching the end of the exponential Moore’s roadmap for device downscaling, the necessity of finding new candidate materials has forced many research groups to explore many different types of non-conventional materials. Among them, graphene, CNTs and organic conductors are the most successful alternatives. Finding a material with metallic properties combined with field effect characteristics on nanoscale level has been always a dream to continue the ever-shrinking road of the nanoelectronics. Due to its fantastic features such as high mobility, optical transparency, room temperature quantum Hall effect, mechanical stiffness, etc. the atomically thin carbon layer, graphene, has attracted the industry’s attention not only in the micro-, nano-, and opto-electronics but also in biotechnology. This paper reviews the basics and previous works on graphene technology and its developments. Compatibility of this material with Si processing technology is its crucial characteristic for mass production. This study also reviews the physical and electrical properties of graphene as a building block for other carbon allotropes. Different growth methods and a wide range of graphene’s applications will be discussed and compared. A brief comparison on the performance result of different types of devices has also been presented. Until now, the main focus of research has been on the background physics and its application in electronic devices. But, according to the recent works on its applications in photonics and optoelectronics, where it benefits from the combination of its unique optical and electronic properties, even without a bandgap, this material enables ultrawide-band tunability. Here in this article we review different applications and graphene’s advantages and drawbacks will be mentioned to conclude at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61

Similar content being viewed by others

References

  1. V. Eswaraiah, S.S.J. Aravind, S. Ramaprabhu, Top–down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem. 21(19), 6800 (2011)

    Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Google Scholar 

  3. K.W.C. Lai, C.K.M. Fung, H. Chen, R. Yang, B. Song, N. Xi, Fabrication of graphene devices for infrared detection. IEEE Nanotechnology Materials and Devices Conference, pp. 14–17 (2010)

  4. G. Liu, A.A. Balandin, Tuning of graphene properties via controlled exposure to electron beams. IEEE Trans. Nanotechnol. 10(4), 865–870 (2011)

    Google Scholar 

  5. C. Baatar, Promises of graphene nanoelectronics, in Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, 2008, vol. 3, p. 190

  6. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3(4), 206–209 (2008)

    Google Scholar 

  7. K. Bolotin, K. Sikes, Z. Jiang, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

  8. C. Y. Sung, Graphene nanoelectronics. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, 40, 1–2 (2009)

  9. K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.K.I. Grigorieva, S.V. Dubonos, A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Google Scholar 

  10. S. Vaziri, Fabrication and characterization of graphene field effect transistors, Master thesis at Royal Institute of Technology KTH, 2011

  11. S. Kim, J. Ihm, H.J. Choi, Y.W. Son, Origins of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 100(17), 176802 (2008)

    Google Scholar 

  12. F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P.M. Ajayan, N. Koratkar, Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 6(22), 2535–2538 (2010)

    Google Scholar 

  13. T. Gokus, R.R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, Making graphene luminescent by oxygen plasma treatment. ACS Nano 3(12), 3963–3968 (2009)

    Google Scholar 

  14. M.G. Ancona, Electron transport in graphene from a diffusion-drift perspective. IEEE Trans. Electron. Device. 57(3), 681–689 (2010)

    Google Scholar 

  15. G. S. Kliros, Quantum capacitance of bilayer graphene, in CAS 2010 Proceedings (international semiconductor conference), 2010(1), 69–72

  16. G.M. Rutter, S. Jung, N.N. Klimov, D.B. Newell, N.B. Zhitenev, J.A. Stroscio, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011)

    Google Scholar 

  17. G. Fiori, G. Iannaccone, On the possibility of tunable-gap bilayer graphene FET. IEEE Electron. Device Lett. 30(3), 261–264 (2009)

    Google Scholar 

  18. A. Avetisyan, B. Partoens, F. Peeters, Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81(11), 115432 (2010)

    Google Scholar 

  19. Web address: http://www.sciencedaily.com/releases/2009/06/090610133453.htm, pp. 6–9, 2012

  20. G. Rutter, S. Jung, N. Klimov, Microscopic polarization in bilayer graphene. Nat. Phys. 7(8), 649–655 (2011)

    Google Scholar 

  21. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459(7248), 820–823 (2009)

    Google Scholar 

  22. V. Barone, O. Hod, G.E.G.E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)

    Google Scholar 

  23. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007)

    Google Scholar 

  24. C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, D. Jena, Quantum transport in patterned graphene nanoribbons. In Semiconductor Device Research Symposium, 2009. ISDRS’09. International, pp. 1–2, (2009)

  25. F. Xia, D.B.D.B. Farmer, Y.-M. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10(2), 715–718 (2010)

    Google Scholar 

  26. N. Jung, N. Kim, S. Jockusch, N.J. Turro, P. Kim, L. Brus, Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett. 9(12), 4133 (2009)

    Google Scholar 

  27. M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10(1), 20–27 (2007)

    Google Scholar 

  28. S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(2000), 4613–4616 (2000)

    Google Scholar 

  29. T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri, Structure, stability, edge states and aromaticity of graphene ribbons. Phys. Rev. Lett. 101(9), 96402 (2008)

    Google Scholar 

  30. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)

    Google Scholar 

  31. M. Dragoman, D. Dragoman, A. Muller, High frequency devices based on graphene. In Semiconductor Conference, 2007. CAS 2007. International, pp. 53–56 (2007)

  32. R. Shishir, D. Ferry, S. Goodnick, Intrinsic mobility limit in graphene at room temperature. In Nanotechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on, 8, 21–24 (2009)

  33. Z. Tao, Y. Sheng-ke, Z. Min, Z. Yue, C. Jing, The research of preparation and catalytic property of the titanium plate which loaded with the graphene modified SnO2. Water Resour. Environ. Prot. (ISWREP) Int. Symp. 2, 1501–1503 (2011)

    Google Scholar 

  34. A. Lherbier, X. Blase, Y.M. Niquet, F. Triozon, S. Roche, Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 101(3), 36808 (2008)

    Google Scholar 

  35. R. Murali, K. Brenner, Y. Yang, T. Beck, J.D. Meindl, Resistivity of graphene nanoribbon (GNR) interconnects. Electron. Device Lett. IEEE 30(6), 611–613 (2009)

    Google Scholar 

  36. M. Clavel, T. Poiroux, M. Mouis, L. Becerra, J.L. Thomassin, A. Zenasni, G. Lapertot, D. Rouchon, D. Lafond, O. Faynot, Influence of annealing temperature on the performance of graphene/SiC transistors with high-k/metal gate. In Ulis 2011 Ultimate Integration on Silicon International Conference on Ultimate Integration of Silicon: ULIS, 2011, 2011, pp. 1–4

  37. H. Cheng, Development of graphene-based materials for energy storage. In Vacuum Electron Sources Conference and Nanocarbon (IVESC), 2010 8th International, 2010, 3187(2010), 49

  38. D. Elias, R. Nair, T. Mohiuddin, S. Morozov, P. Blake, M. Halsall, A. Ferrari, D. Boukhvalov, M. Katsnelson, A. Geim et al., Control of graphene’s properties by reversible hydrogenation. Science 323(5914), 610–613 (2009)

    Google Scholar 

  39. A. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    Google Scholar 

  40. Y. Yang, R. Murali, Impact of size effect on graphene nanoribbon transport. Electron. Device Lett. IEEE 31(3), 237–239 (2010)

    Google Scholar 

  41. K. Bolotin, K. Sikes, J. Hone, H. Stormer, P. Kim, Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008)

  42. A.A. Balandin, Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)

    Google Scholar 

  43. M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6(1), 42–60 (2011)

    Google Scholar 

  44. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Google Scholar 

  45. Y. Shi, K.K. Kim, A. Reina, M. Hofmann, L.J. Li, J. Kong, Work function engineering of graphene electrode via chemical doping. ACS Nano 4(5), 2689–2694 (2010)

    Google Scholar 

  46. L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, A. Geim, Chaotic dirac billiard in graphene quantum dots. Science 320(5874), 356–358 (2008)

    Google Scholar 

  47. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)

    Google Scholar 

  48. M. Cox, A. Gorodetsky, B. Kim, K.S. Kim, Z. Jia, P. Kim, C. Nuckolls, I. Kymissis, Single-layer graphene cathodes for organic photovoltaics. Appl. Phys. Lett. 98(12), 123303 (2011)

    Google Scholar 

  49. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Observation of an electric-field induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102(25), 256405 (2009)

    Google Scholar 

  50. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Google Scholar 

  51. W. Deng, W.A. Goddard, J. Che, C. Tahir, Thermal conductivity of diamond and related materials from molecular dynamics simulations. J. Chem. Phys. 113(16), 6888–6900 (2000)

    Google Scholar 

  52. A.A.K. Geim, A.H.A. MacDonald, Graphene: exploring carbon flatland. Phys. Today 60(8), 35–41 (2007)

    Google Scholar 

  53. A. Kathalingam, V. Senthilkumar, J.-K. Rhee, Hysteresis I–V nature of mechanically exfoliated graphene FET. J. Mater. Sci. Mater. Electron. 25(3), 1303–1308 (2014)

    Google Scholar 

  54. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

    Google Scholar 

  55. K. Choi, A. Ali, J. Jo, Randomly oriented graphene flakes film fabrication from graphite dispersed in N-methyl-pyrrolidone by using electrohydrodynamic atomization technique. J. Mater. Sci. Mater. Electron. 24(12), 4893–4900 (2013)

    Google Scholar 

  56. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)

    Google Scholar 

  57. D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J. Mater. Chem. 21(10), 3428 (2011)

    Google Scholar 

  58. X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    Google Scholar 

  59. V. Alzari, D. Nuvoli, S. Scognamillo, Graphene-containing thermoresponsive nanocomposite hydrogels of poly (N-isopropylacrylamide) prepared by frontal polymerization. J. Mater. Chem. 21(24), 8727 (2011)

    Google Scholar 

  60. M. Choucair, P. Thordarson, J. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 2–5 (2008)

    Google Scholar 

  61. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)

    Google Scholar 

  62. M. Ali-Umar, C. Yap, R. Awang, M. Hj-Jumali, M. Mat-Salleh, M. Yahaya, Characterization of multilayer graphene prepared from short-time processed graphite oxide flake. J. Mater. Sci. Mater. Electron. 24(4), 1282–1286 (2013)

    Google Scholar 

  63. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. (NY) 45(7), 1558–1565 (2007)

    Google Scholar 

  64. A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, N.S. Hosmane, Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21(26), 9491 (2011)

    Google Scholar 

  65. L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5(5), 321–325 (2010)

    Google Scholar 

  66. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature. 458, 877–880 (2009)

  67. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)

    Google Scholar 

  68. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)

    Google Scholar 

  69. K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)

    Google Scholar 

  70. C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010)

    Google Scholar 

  71. P. Macháč, T. Fidler, S. Cichoň, V. Jurka, Synthesis of graphene on Co/SiC structure. J. Mater. Sci. Mater. Electron. 24(10), 3793–3799 (2013)

    Google Scholar 

  72. H. Huang, W. Chen, S. Chen, A.T.S. Wee, A. Thye, S. Wee, Bottom–up growth of epitaxial graphene on 6H-SiC (0001). ACS Nano 2(12), 2513–2518 (2008)

    Google Scholar 

  73. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature. Mater. 8(3), 203–207 (2009)

    Google Scholar 

  74. S. Amini, J. Garay, G. Liu, A.A. Balandin, R. Abbaschian, Growth of large-area graphene films from metal–carbon melts. J. Appl. Phys. 108(9), 94321 (2010)

    Google Scholar 

  75. J. Hofrichter, B.N. Szafranek, M. Otto, T.J. Echtermeyer, M. Baus, A. Majerus, V. Geringer, M. Ramsteiner, H. Kurz, Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett. 10(1), 36–42 (2010)

    Google Scholar 

  76. A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer, J. Kong, Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2, 509–516 (2009)

  77. A. Reina, X. Jia, J. Ho, D. Nezich, V. Bulovic, M.S. Dresselhaus, J. Kong, H. Son, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)

    Google Scholar 

  78. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)

    Google Scholar 

  79. Z. Juang, C.-Y. Wu, A.-Y. Lu, C.-Y. Su, K. Leou, F.-R. Chen, C.-H. Tsai, Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon. (NY) 48(11), 3169–3174 (2010)

  80. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, W. Cai, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Google Scholar 

  81. J. Sun, N. Lindvall, M. Cole, Low partial pressure chemical vapor deposition of graphene on copper. IEEE Trans. Nanotechnol. 11(2), 255–260 (2012)

    Google Scholar 

  82. A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon. (NY) 49(13), 4204–4210 (2011)

    Google Scholar 

  83. Y. S. Kim, J. H. Lee, S.-K. Jerng, E. Kim, S. Seo, J. Jung, S.-H. Chun, Y. Seung, and J. Hong, “H 2 -free synthesis of monolayer graphene with controllable grain size by plasma enhanced chemical vapor deposition,” Nanoscale, 2013

  84. J. Fan, T. Li, Y. Gao, J. Wang, H. Ding, H. Heng, Comprehensive study of graphene grown by chemical vapor deposition. J. Mater. Sci. Mater. Electron. 25(10), 4333–4338 (2014)

    Google Scholar 

  85. C. Miao, C. Zheng, O. Liang, Y. Xie, Chemical vapor deposition of graphene. Phys. Appl. Graph. Exp. 37–54 (2011)

  86. S. Thiele, A. Reina, P. Healey, J. Kedzierski, P. Wyatt, P.L. Hsu, C. Keast, J. Schaefer, J. Kong, Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Nanotechnology 21(1), 15601 (2009)

    Google Scholar 

  87. G. Nandamuri, S. Roumimov, R. Solanki, Chemical vapor deposition of graphene films. Nanotechnology 21(14), 145604 (2010)

    Google Scholar 

  88. A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, C. Van Haesendonck, Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 19(30), 305604 (2008)

    Google Scholar 

  89. L. Jiang, X. Lu, J. Xu, Y. Chen, G. Wan, Y. Ding, Free-standing microporous paper-like graphene films with electrodeposited PPy coatings as electrodes for supercapacitors. J. Mater. Sci. Mater. Electron. 1–8 (2014)

  90. H.K. Jeong, J.D.C. Edward, G.H. Yong, L.C. Hun, Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD). J. Korean Phys. Soc. 58(1), 53 (2011)

    Google Scholar 

  91. J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang, H.W. Tian, Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 257(15), 6531–6534 (2011)

    Google Scholar 

  92. J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, A.K. Swan, B.B. Goldberg, R.S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9), 6916–6924 (2011)

    Google Scholar 

  93. M.J. Allen, V.C. Tung, L. Gomez, Z. Xu, L.M. Chen, K.S. Nelson, C. Zhou, R.B. Kaner, Y. Yang, Soft transfer printing of chemically converted graphene. Adv. Mater. 21(20), 2098–2102 (2009)

    Google Scholar 

  94. L.L. Song, L. Ci, W. Gao, P.M.P.M. Ajayan, Transfer printing of graphene using gold film. ACS Nano 3(6), 1353–1356 (2009)

    Google Scholar 

  95. W. Regan, N. Alem, B. Alemán, B. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie, A. Zettl, A direct transfer of layer-area graphene. Appl. Phys. Lett. 96(11), 113102 (2010)

    Google Scholar 

  96. P. Nemes-Incze, Z. Osváth, K. Kamarás, L.P. Biró, Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon. (NY) 46(11), 1435–1442 (2008)

    Google Scholar 

  97. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)

    Google Scholar 

  98. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, H. Harutyuyan, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)

    Google Scholar 

  99. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    Google Scholar 

  100. M. Wall, Raman spectroscopy optimizes graphene characterization. Adv. Mater. Process. 35–38 (2012)

  101. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6(12), 2667–2673 (2006)

    Google Scholar 

  102. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)

    Google Scholar 

  103. H. Iwai, Roadmap for 22 nm and beyond (invited paper). Microelectron. Eng. 86(7–9), 1520–1528 (2009)

    Google Scholar 

  104. B. Streetman, S. Banerjee, in Solid State Electronic Devices (Prentice Hall Series in Solid State Physical Electronics). 2007

  105. The International Technology Roadmap for Semiconductors. Available http://www.itrs.net/Links/2011ITRS/Home2011.htm (Semiconductor Industry Association, 2011)

  106. Y. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 237, 662 (2010)

    Google Scholar 

  107. J.S. Moon, D. Curtis, M. Hu, D. Wong, C. Mcguire, P.M. Campbell, G. Jernigan, J.L. Tedesco, B. Vanmil, C. Eddy, D.K. Gaskill, Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron. Device. Lett. 30(6), 650–652 (2009)

    Google Scholar 

  108. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94(6), 062107 (2009)

    Google Scholar 

  109. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Room-temperature all-semiconducting Sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803 (2008)

    Google Scholar 

  110. Y. Lu, B. Goldsmith, D.R. Strachan, J.H. Lim, Z. Luo, A.T.C. Johnson, High-On/Off-ratio graphene nanoconstriction field-effect transistor. Small 6(23), 2748–2754 (2010)

    Google Scholar 

  111. M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, A graphene field-effect device. Electron. Device. Lett. IEEE 28(4), 282–284 (2007)

    Google Scholar 

  112. S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme, A graphene-based hot electron transistor. Nano Lett. 13(4), 1435–1439 (2013)

    Google Scholar 

  113. M.C. Lemme, T.J. Echtermeyer, M. Baus, B.N. Szafranek, J. Bolten, M. Schmidt, T. Wahlbrink, H. Kurz, Mobility in graphene double gate field effect transistors. Solid State Electron. 52(4), 514–518 (2008)

    Google Scholar 

  114. F. Guinea, M. I. Katsnelson, A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2010)

  115. C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet, U. Starke, Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 81(23), 235401 (2010)

    Google Scholar 

  116. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008)

    Google Scholar 

  117. M. Evaldsson, I. Zozoulenko, H. Xu, T. Heinzel, Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys. Rev. B 1, 1–4 (2008)

    Google Scholar 

  118. Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Phys. E Low-Dimens Syst. Nanostruct. 40(2), 228–232 (2007)

    Google Scholar 

  119. L. Tapaszto, G. Dobrik, P. Lambin, L.P. Biro, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature. Nano 3(7), 397–401 (2008)

    Google Scholar 

  120. S.S. Datta, D.R. Strachan, S.M. Khamis, A.T.C. Johnson, Crystallographic etching of few-layer graphene. Nano Lett. 8(7), 1912–1915 (2008)

    Google Scholar 

  121. L. Ci, Z. Xu, L. Wang, W. Gao, F. Ding, K.F. Kelly, B.I. Yakobson, P.M. Ajayan, Controlled nanocutting of graphene. Nano Res. 1(2), 116–122 (2008)

    Google Scholar 

  122. J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, M. Terrones, Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 8(9), 2773–2778 (2008)

    Google Scholar 

  123. F. Schwierz, J.J. Liou, RF transistors: recent developments and roadmap toward terahertz applications. Solid State Electron. 51(8), 1079–1091 (2007)

    Google Scholar 

  124. Y. Wu, Y. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472(7341), 74–78 (2011)

    Google Scholar 

  125. L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467(7313), 305–308 (2010)

    Google Scholar 

  126. L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10(5), 1917–1921 (2010)

    Google Scholar 

  127. J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charged-impurity scattering in graphene. Nature. Phys. 4(5), 377–381 (2008)

    Google Scholar 

  128. R.G. Gordon, Criteria for choosing transparent conductors. MRS Bull. 25(08), 52–57 (2000)

    Google Scholar 

  129. P. Matyba, H. Yamaguchi, G. Eda, K̇.M. Chhowalla, K̇̇.L. Edman, N.D. Robinson, M. Chhowalla, L. Edman, Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices. ACS Nano 4(2), 637–642 (2010)

    Google Scholar 

  130. L. Jiang, X. Lu, X. Zheng, Copper/silver nanoparticle incorporated graphene films prepared by a low-temperature solution method for transparent conductive electrodes. J. Mater. Sci. Mater. Electron. 25(1), 174–180 (2014)

    Google Scholar 

  131. H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999)

    Google Scholar 

  132. Y. Park, V. Choong, Y. Gao, B.R. Hsieh, C.W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 68(19), 2699–2701 (1996)

    Google Scholar 

  133. S.T. Lee, Z.Q. Gao, L.S. Hung, Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 75(10), 1404 (1999)

    Google Scholar 

  134. I.-M. Chan, T.-Y. Hsu, F.C. Hong, Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81(10), 1899–1901 (2002)

    Google Scholar 

  135. J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43–48 (2010)

    Google Scholar 

  136. Q. Pei, A.J. Heeger, Operating mechanism of light-emitting electrochemical cells. Nat. Mater. 7, 167 (2008)

  137. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, Y. Chen, Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater. 20(20), 3924–3930 (2008)

    Google Scholar 

  138. J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92(26), 263302 (2008)

    Google Scholar 

  139. N.M. Gabor, J.C.W. Song, Q. Ma, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, P. Jarillo-Herrero, Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011)

  140. V.V. Cheianov, V. Fal’ko, B.L. Altshuler, The focusing of electron flow and a Veselago lens in graphene p–n junctions. Science 315(5816), 1252–1255 (2007)

    Google Scholar 

  141. V.V. Cheianov, V.I. Fal’ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene. Phys. Rev. B 74(4), 41403 (2006)

    Google Scholar 

  142. S. Tanachutiwat, J.U. Lee, W. Wang, C.Y. Sung, Reconfigurable multi-function logic based on graphene p–n junctions. In Proceedings of the 47th Design Automation Conference on DAC 10, 2010, pp. 883–888

  143. P. Atanasov, A. Kaisheva, I. Iliev, V. Razumas, J. Kulys, Glucose biosensor based on carbon black strips. Biosens. Bioelectron. 7(5), 361–365 (1992)

    Google Scholar 

  144. S. Timur, L. Della, N. Pazarlioˇ, R. Pilloton, A. Telefoncu, Screen printed graphite biosensors based on bacterial cells. Process. Biochem. 39, 1325–1329 (2004)

    Google Scholar 

  145. Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 4, 191–195 (2004)

  146. J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126(10), 3010–3011 (2004)

    Google Scholar 

  147. Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 2–6 (2009)

    Google Scholar 

  148. S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen, Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521–3526 (2010)

    Google Scholar 

  149. N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4469–4476 (2008)

    Google Scholar 

  150. R. Stine, J.T. Robinson, P.E. Sheehan, C.R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors. Adv. Mater. 22(46), 5297–5300 (2010)

    Google Scholar 

  151. X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649–1653 (2010)

    Google Scholar 

  152. Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25(10), 2366–2369 (2010)

    Google Scholar 

  153. Y. Hu, K. Wang, Q. Zhang, F. Li, T. Wu, L. Niu, Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 33(4), 1097–1106 (2012)

    Google Scholar 

  154. Z. Tang, H. Wu, J.R. Cort, G.W. Buchko, Y. Zhang, Y. Shao, I.A. Aksay, J. Liu, Y. Lin, Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6(11), 1205–1209 (2010)

    Google Scholar 

  155. E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay, Elisa: III. Quantitation of specific antibodies by enzyme-labled anti-immunoglobulin in antigen-coated tubes. J. Immunol. 109, 129–135 (1972)

    Google Scholar 

  156. A. Bonanni, M. Pumera, Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5(3), 2356–2361 (2011)

    Google Scholar 

  157. A.H. Loo, A. Bonanni, M. Pumera, Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 4(1), 143–147 (2012)

    Google Scholar 

  158. G. Lu, L.E. Ocola, J. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 083111(2009), 8–11 (2012)

    Google Scholar 

  159. H. Li, Y. Anugrah, S.J. Koester, M. Li, Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101(11), 111110 (2012)

  160. B. Scharf, V. Perebeinos, J. Fabian, P. Avouris, Effects of optical and surface polar phonons on the optical conductivity of doped graphene. Phys. Rev. B 87(3), 35414 (2013)

    Google Scholar 

  161. N. Youngblood, C. Chen, S. Koester, M. Li, Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. arXiv Prepr. arXiv1409.6412, pp. 1–17, 2014

  162. N. Haratipour, M. Robbins, S. Koester, Black phosphorus p-MOSFETs with high transconductance and nearly ideal subthreshold slope. arXiv Prepr. arXiv1409.8395, 55455, 2–4 (2014)

  163. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7(11), 883–887 (2013)

    Google Scholar 

  164. B. Jalali, S. Fathpour, Silicon photonics. Light. Technol. J. 24(12), 4600–4615 (2006)

    Google Scholar 

  165. Y. Vlasov, S. McNab, Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12(8), 1622–1631 (2004)

    Google Scholar 

  166. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, R.G. Baets, Compact wavelength-selective functions in silicon-on-insulator photonic wires. Sel. Top. Quantum Electron. IEEE J. 12(6), 1394–1401 (2006)

    Google Scholar 

  167. E.J.H. Lee, K. Balasubramanian, R.T. Weitz, M. Burghard, K. Kern, Contact and edge effects in graphene devices. Nat. Nanotechnol. 3(8), 486–490 (2008)

    Google Scholar 

  168. F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. Lin, J. Tsang, V. Perebeinos, P. Avouris, Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9(3), 1039–1044 (2009)

    Google Scholar 

  169. J. Park, Y.H. Ahn, C. Ruiz-Vargas, Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9(5), 1742–1746 (2009)

    Google Scholar 

  170. X. Xu, N.M. Gabor, J.S. Alden, A.M. van der Zande, P.L. McEuen, Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10(2), 562–566 (2009)

    Google Scholar 

  171. M.C. Lemme, F.H.L. Koppens, A.L. Falk, M.S. Rudner, H. Park, L.S. Levitov, C.M. Marcus, Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11(10), 4134–4137 (2011)

    Google Scholar 

  172. A. Pospischil, M. Humer, M.M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7(11), 892–896 (2013)

    Google Scholar 

  173. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4(5), 297–301 (2010)

    Google Scholar 

  174. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser et al., Microcavity-integrated graphene photodetector. Nano Lett. 12(6), 2773–2777 (2012)

    Google Scholar 

  175. J. Yan, M.H. Kim, J.A. Elle, A.B. Sushkov, G.S. Jenkins, H.M. Milchberg, M.S. Fuhrer, H.D. Drew, Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7(7), 472–478 (2012)

    Google Scholar 

  176. L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11(10), 865–871 (2012)

    Google Scholar 

  177. S.J. Koester, M. Li, High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100(17), 171107 (2012)

    Google Scholar 

  178. A.J. Hong, E.B. Song, H.S. Yu, M.J. Allen, J. Kim, J.D. Fowler, J.K. Wassei, Y. Park, Y. Wang, J. Zou et al., Graphene flash memory. ACS Nano 5(10), 7812–7817 (2011)

    Google Scholar 

  179. H. Liu, J. Huang, C. Xiang, J. Liu, X. Li, In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 24(10), 3640–3645 (2013)

    Google Scholar 

  180. B. Meschi Amoli, J. Trinidad, A. Hu, Y.N. Zhou, B. Zhao, Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement. J. Mater. Sci. Mater. Electron. 26, 590–600 (2015)

  181. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 490, 2012 (2007)

    Google Scholar 

  182. X. Tao, Q. Hong, T. Xu, F. Liao, Highly efficient photocatalytic performance of graphene–Ag3VO4 composites. J. Mater. Sci. Mater. Electron. 25(8), 3480–3485 (2014)

    Google Scholar 

  183. G. Hwang, J.J.C. Acosta, E. Vela, S. Haliyo, S. Regnier, Graphene as thin film infrared optoelectronic sensor. In International Symposium on Optomechatronic Technologies (ISOT) 2009, Istanbul, pp. 169–174 (2009)

  184. V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, T. Otsuji, Terahertz and infrared detectors based on graphene structures. Infrared Phys. Technol. 54(3), 302–305 (2011)

    Google Scholar 

  185. M.C. Lemme, Current status of graphene transistors. Solid State Phenom. 156–158, 499–509 (2009)

    Google Scholar 

  186. A.H.C. Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Kolahdouz or H. H. Radamson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, F., Kolahdouz, M., Larimian, S. et al. Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J Mater Sci: Mater Electron 26, 4347–4379 (2015). https://doi.org/10.1007/s10854-015-2725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2725-9

Keywords