[go: up one dir, main page]

Skip to main content
Log in

Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stir zone microstructure, crystallographic texture, temperature and strain rate in the stir zones produced during Al 2024 spot welding using different tool rotational speed settings are investigated. The calculated strain rate during spot welding decreases from 1600 to 0.6 s−1 when the tool rotational speed increases from 750 to 3000 rpm. The low strain rate values are associated with tool slippage resulting from spontaneous melting of S phase particles at temperatures ≥490 °C. However, the calculated strain rate is 1600 s−1 in Al 2024 spot welds made using tool rotational speed of 750 rpm since the temperature never reaches 490 °C. Material transfers downwards via that pin thread during the dwell period in Al 2024 spot welding. It is proposed that this downward transfer of material provides a continuous supply of undissolved S phase particles, which melt spontaneously when the welding parameter settings produce stir zone temperatures ≥490 °C. A weak crystallographic texture where the {100} planes are oriented at about 45° to the θ-direction exists in the stir zones of spot welds made using different tool rotational speeds (from 750 to 3000 rpm). Another crystallographic texture where the {100} planes are parallel to the Z-direction (to the tool axis) is stronger in spot welds made using higher tool rotational speed settings. Also, material located at the root of the pin thread has a quite different crystallographic texture from that in the bulk of the stir zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Thomas WM, Nicholas ED, Needham JD, Murch MG, Templesmith P, Daws CJ (1991) G.B. Patent Application No. 9125978.8, Dec. 1991; U.S. Patent No. 5460317, Oct. 1995

  2. Mishra RS, Ma ZY (2005) Mater Sci Eng R 50:1

    Article  Google Scholar 

  3. Woo W, Choo H, Brown DW, Liaw P K, Feng Z (2006) Scripta Mater 54(11):1859

    Article  CAS  Google Scholar 

  4. Ramirez AJ, Juhas MC (2003) Mater Sci Forum 426–432(Part 4):2999

    Article  Google Scholar 

  5. Andersson CG, Andrews RE, Dance BGI, Russell MJ, Olden EJ, Sanderson RM (2000) In: Proceedings 2nd Int. Symp. on Friction Stir Welding, Gothenburg, Sweden, 2000

  6. Cho J-H, Dawson PR (2006) Met Mater Trans A 37A(4):1147

    Article  CAS  Google Scholar 

  7. Strand SR, Sorensen CD, Nelson TW (2003) In: Proceedings ANTEC 2003 Conference, 2003, p 1078

  8. Cavaliere P (2006) J Mater Sci 41:4299

    Article  CAS  Google Scholar 

  9. Lockwood WD, Tomaz B, Reynolds AP (2002) Mater Sci Eng A 323(1–2):348

    Article  Google Scholar 

  10. Sutton MA, Yang B, Reynolds AP, Taylor R (2002) Mater Sci Eng A 323(1–2):160

    Article  Google Scholar 

  11. Cederqvist L, Reynolds AP (2001) Weld J 80(12):281s

    Google Scholar 

  12. Reynolds AP, Tang W (2001) In: Proceedings Friction Stir Welding and Processing Symposium. Indianapolis, USA, 2001, p 15

  13. Sato Y, Kokawa H (2001) Weld Int 15(9):693

    Article  Google Scholar 

  14. Biallas G, Braun R, Dalle Donne C, Staniek G, Kaysser WA (1999) In: Proceedings of 1st Int. Symp. on Friction Stir Welding, Thousand Oaks, 1999

  15. Zettler R, Lomolino S, Dos Santos JF, Donath Beckmann TF, Lippman T, Lohwasser D (2005) Weld World 49(3–4):41

    Article  Google Scholar 

  16. Starink ML, Wang SC, Sinclair I (2005) Friction Stir Welding and Processing III. In: Jata KV et al TMS (2005) 233

  17. Schilling C, Dos Santos J (2001) International Patent Publication No. WO 01/36144A1, May 25, 2001

  18. Gerlich A, Su P, North TH (2005) J Mater Sci 40(24):6473

    Article  CAS  Google Scholar 

  19. Sakano R, Murakami K, Yamashita K, Hyoie T, Fujimoto M, Inuzuka M, Nagao Y, Kashiki H (2001) In: Proc. 7th Int. Symp. JWS, 2001, 645

  20. Lin P-C, Lin S-H, Pan J, Pan T, Nicholson JM, Garman MA (2004) SAE Technical Series, 2004-01-1330

  21. Su P, Gerlich A, North TH (2005) SAE Technical Series, 2005-01-1255

  22. Frigaard Ø, Grong Ø, Hjelen J, Gulbrandsen-Dahl S, Midling OT (1999) In: Proc. 1st Internat. Symp. on Friction Stir Welding, Thousand Oaks, USA, 1999, TWI

  23. TH North, GJ Bendzsak, CB Smith, GH Luan (2001) In: Proc. of the 7th Int. Symp. JWS, Kobe, Japan, 2001, 621

  24. Hassan KhAA, Prangnell PB, Norman AF, Price DA, Williams SW (2003) Sci Tech Weld Joining 8:257

    Article  CAS  Google Scholar 

  25. Gerlich A, Cingara GA, North TH (2006) Met Trans A 37A:2773

    Article  CAS  Google Scholar 

  26. Schmidt H, Hattel J (2005) In: Friction stir welding and processing III, ed. (2005) 225

  27. Su P, Gerlich A, North TH, Bendzsak GJ (2006) Sci Tech Weld Joining 11(2):163

    Article  Google Scholar 

  28. Su P, Gerlich A, North TH, Bendzsak GJ (2006) SAE Technical Series, 2006-01-0971

  29. Gerlich A, Cingara GA, North TH (2006) Mater Sci Forum 519–521:1107

  30. Gerlich A, Su P, North TH, Bendzsak GJ (2006) In: Proc. Friction Stir Welding Colloquium, Graz, Austria, 23 May 2006

  31. Jones MJ, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver JH (2005) Scripta Mater 52:693

    Article  CAS  Google Scholar 

  32. Bowden FP, Ridler KEW (1936) Proc R Soc Lond Ser A 154(883):640

    Article  Google Scholar 

  33. Bowden FP, Thomas PH (1954) Proc R Soc Lond Ser A 223(1152):29

    Article  Google Scholar 

  34. Mcqueen HJ, Jonas JJ (1975) Treatise on materials science technology, vol 6. Academic Press, New York, N.Y., 393

    Google Scholar 

  35. Mcqueen HJ, Hocket JE (1970) Metall Trans A 1:2997

    CAS  Google Scholar 

  36. Avramovic-Cingara G, Mcqueen HJ, Hopkins A, Jain V, Perovic D Light weight alloys for aerospace applications. In: Lee EW et al (eds) TMS-AIME, 333

  37. Avramovic-Cingara G, Mcqueen HJ (1994) Aluminium 70(3):214

    CAS  Google Scholar 

  38. Avramovic-Cingara G, Perovic DD, Mcqueen HJ (1996) Metall Mater Trans 27A:3478

    Article  CAS  Google Scholar 

  39. Cerri E, Evangelista E, Forcellese A, Mcqueen HJ (1995) Mater Sci Eng A197:181

    Article  CAS  Google Scholar 

  40. Sheppard T (1990) In: Chen CQ, EA Starke EA (eds) Second Int. Conf. on Aluminum Alloys – Their Physical and Mechanical Properties. International Academic Publisher, p 744

  41. Sheppard T (1987) In: Leoben-Wien (ed) Proc. 8th Light Metal Congress (8 Internationale Leichmetalltagung), 1987, 301

  42. Yang B, Yan J, Sutton M, Reynolds AP (2004) Mater Sci Eng A364:55

    Article  CAS  Google Scholar 

  43. ASM Metals Handbook, 8th edn (1961) 938

  44. Benavides Y, Li Y, Murr LE, Brown D, Mcclure JC (1999) Scripta Mater 41(8):809

    Article  CAS  Google Scholar 

  45. Charit I, Mishra RS (2003) Mater Eng A359:290

    Article  CAS  Google Scholar 

  46. Jones MJ, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver JH (2005) Scripta Mater 52:693

    Article  CAS  Google Scholar 

  47. Karlsen M, Frigaard Ø, Hjelen J, Grong Ø, Norum H (2003) Mater Sci Forum 426–432:2861

    Article  Google Scholar 

  48. Norman AF, Brough I, Prangnell PB (2000) Mater Sci Forum 331–337:1713

    Article  Google Scholar 

  49. Sutton MA, Reynolds A P, Wang D-Q, Hubbard CR (2002) J Eng Mater Technol 124:215

    Article  Google Scholar 

  50. Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Pergamon Press, Oxford

    Google Scholar 

  51. Cohen M, Montheillet F (1979) Rapport ATP CNRS, contract No. 3136 (1979)

  52. Kocks UF (1998) Texture and anisotropy. Cambridge University Press

  53. Heurtier P, Desrayaud C, Montheillet F (2002) Mater Sci Forum 396–402:1537

    Article  Google Scholar 

  54. North TH, Bendzsak GJ, Gerlich A, Su P, Maldonado C (2005) AWJT’2005 Conference, Dalian, PR China, 2005

  55. North TH, Bendzsak GJ, Gerlich A, Su P, Cingara G (2006) THERMEC 2006. Vancouver, Canada, 2006

  56. Pérez-Prado MT, González-Doncel G, Ruano OA, Mcnelley TR (2001) Acta Mater 49(12):2259

    Article  Google Scholar 

  57. Fonda RW, Bingert JF, Colligan KJ (2004) Scripta Mater 51:243

    Article  CAS  Google Scholar 

  58. Sato YS, Urata M, Kokawa H (2002) Metall Mater Trans A 33A:625

    Article  Google Scholar 

  59. Droenen P-E, Ryum N (1994) Met Trans A 25A:521

  60. Reiso O, Øverlie H-G, Ryum N (1990) Met Trans A 21A:1689

  61. Li X-M, Starink MJ (2001) Mater Sci Tech 17:1324

    Article  CAS  Google Scholar 

  62. Dalle-Donne C, Braun B, Staniek G, Jung A, Kayser WA (1998) Materialwiss Werkst 29:609

  63. North TH, Bendzsak GJ, Smith CB (2000) In: Proc. 2nd Int. Conf. Friction Stir Welding, Gothenburg, Sweden, 2000, TWI

  64. Gerlich A, Su P, North TH (2005) Sci Tech Weld Joining 10:647

    Article  CAS  Google Scholar 

  65. Sato YS, Hwan S, Park C, Michiuchi M, Kokawa H (2004) Scripta Mater 50(9):1233

    Article  CAS  Google Scholar 

  66. Cavaliere P, Cerri E, Squillace A (2005) J Mater Sci 40:3669

    Article  CAS  Google Scholar 

  67. Whelan MJ (1969) Met Sci J 3:95

    Article  CAS  Google Scholar 

  68. Brooks CR (1982) Heat treatment, structure and properties of nonferrous alloys, ASM Int 128

  69. Smithells CJ (1992) In: Brandes EA, Brook GB (eds) Metals reference book: 7th edn. Butterworth-Heinemann Ltd., p 13

  70. Tundal U, Reiso O, Ryum N (1994) In: Fourth Int. Conf. on Aluminum Alloys (ICAA4), (1994) 590

  71. Su J-Q, Nelson TW, Mishra M, Mahoney M (2003) Acta Mater 51:713

    Article  CAS  Google Scholar 

  72. Su P, Gerlich A, North TH, Bendzsak GJ (2006) Sci Tech Weld Joining 11(1):61

    Article  CAS  Google Scholar 

  73. Su P, Gerlich A, North TH, Bendzsak GJ (2007) Met Trans A (in press)

Download references

Acknowledgements

The authors wish to acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Gerlich.

Appendix

Appendix

Dissolution of liquid droplets

The Al–Al2CuMg quasi-binary section in the Al–Mg–Cu ternary phase diagram is shown below:

The driving force for diffusion and dissolution of Al2CuMg is determined by the relation:

$$ k = 2\left[ {\frac{{C_{T_2 }^{\alpha /liq} - C_{T_1 }^{\alpha /\beta } }} {{C_{T_2 }^{liq/\alpha } - C_{T_2 }^{\alpha /liq} }}} \right] = 2\left[ {\frac{{5.9 - 5.7}} {{39.4 - 5.9}}} \right]\, = \,0.0119 $$

where, \( C_{T_1 }^{\alpha /\beta } \)= 5.7%, \( C_{T_2 }^{\alpha /liq} = \)5.9%, \( C_{T_2 }^{liq/\alpha } \)= 39.4%, at T 2 = 508 °C [68]. The dissolution of Al2CuMg is calculated at 490 °C since this temperature was attained in spot welds using >1500 rpm and is the reported melting temperature of this phase [61]. The diffusion coefficient of Mg in Al depends on the relation [69]:

$$ D = D_o \,\,\exp \left[ { - \frac{Q} {{RT}}} \right] $$

where, D o = 2.1 × 107 μm2/s, Q = 116 kJ/mol, R = 8.314 J/mol K, = 763°K (490 °C), and thus D Mg in Al = 0.24 μm2/s.

The relation between the initial radius of the liquid droplet R o and the time t available for dissolution at 490 °C is determined by the relation:

$$ R_o = \sqrt {kD_{{\hbox{Mg in Al}}} \cdot t{\hbox{ }}} $$

Dissolution when the Spot Weld Cools to Room Temperature

Figure 5 shows the thermal cycle when the Al 2024 spot weld cools to room temperature. A 9th power polynomial regression analysis was used to extrapolate the temperature output to that conforming with the stir zone temperature (490 °C), see below.

The calculation method employed during the cooling period following spot welding is illustrated below:

The cooling curve obtained from the regression was divided into about 10 °C increments and the diffusion rate (Dn) at each temperature (Tn) was obtained. The mass loss by particles in the stir zone during cooling was calculated from the diffused radius during each time increment, see the above figure.

During the first time interval (from t1s to t1e) the diffused radius is calculated using D 1:

$$ R_1 = R_0 \sqrt {1 - \frac{{kD_1 }} {{R_0 ^2 }}t_{1e} } $$
$$ t_1 = t_{1e} - t_{1s} $$

In each successive time interval, the diffusion radius was obtained by taking account of the previous interval effect. For example, the second time interval (from t2s to t2e) was calculated using D 2:

$$ t_{2s} = \frac{{R_0 ^2 - R_1 ^2 }} {{kD_2 }} $$
$$ R_2 = R_0 \sqrt {1 - \frac{{kD_2 }} {{R_0 ^2 }}t_{2e} } $$
$$ t_2 = t_1 + \left( {t_{2e} - t_{2s} } \right) $$

The radius after cooling (R n ) was calculated during the final nth time interval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlich, A., Su, P., Yamamoto, M. et al. Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy. J Mater Sci 42, 5589–5601 (2007). https://doi.org/10.1007/s10853-006-1103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1103-7

Keywords