Abstract
In this paper, a cooperative search method, based on a multi-agent structure is developed to deal with the k-coloring problem. Three agents coordinate using an adaptive memory, a search agent, an intensification agent and a diversification agent. We use the results of a preliminary fitness landscape study to adjust the navigation strategy in the solution space and to fix the search parameters. Our method provides competitive results and it is fast when compared with best existing techniques on instances extracted from the second DIMACS challenge.
Similar content being viewed by others
References
Bachelet, V.: Métaheuristiques parallèles hybrides: application au problème d’affectation quadratique. PhD Thesis, Université des Sciences et Technologies de Lille, France, Janvier (2000)
Brélaz, D.: New methods to color vertices of a graph. Commun. ACM 22, 251–256 (1979)
Chams, M., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring graphs. Eur. J. Oper. Res. 32(2), 260–266 (1987)
Culberson, J.: Frozen development in graph coloring. Technical Report APES-19-2000, APES Research Group (2000) February 1
Desrosiers, C., Galinier, P., Hertz, A.: Efficient Algorithms for Finding Critical Subgraphs. Les Cahiers de GEARD G-2004-31 (2004) April
Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Ann. Oper. Res. 63, 437–461 (1995)
Friden, C., Hertz, A., de Werra, D.: Stabulus, a technique for finding stable sets in large graphs with tabu search. Computing 42, 35–44 (1989)
Galinier, P., Hao, J.K.: Hybrid evolutionary algorithm for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)
Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the k-colouring problem. Les cahiers de GERAD G-2003-35, GERAD, Montréal (2003)
Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Les cahiers de GIRAD G-2004-32, GERAD, Montréal (2004)
Hamiez, J.P., Hao, J.K: An analysis of solution properties of the graph coloring problem MIC’2001. 4th Metaheuristics International Conference, Porto, Portugal pp. 16–20 (2001) July
Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)
Hordijk, W.: A mesure of landscapes. Technical report 95-045-049, Santa Fe Institute, Santa Fe, New Mexico, USA (1995) May
Hertz, A., Jaumard, B., de Aragao, M.P.: Local optima topology for the k-coloring problem. Discrete Appl. Math. 49, 257–280 (1994)
Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation: part II, graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)
Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. Santa Fe Institute, Working Paper 95-02-022 (1995)
Laguna, M., Marti, R.: A GRASP for coloring sparse graphs. Technical Report (1999) November 17
Morgenstern, C.: Distributed coloration neighborhood search. Discrete Mathematics and Theoretical computer science, Am. Math. Soc. 26, 335–358 (1996)
Weinberg, B.: Analyse et résolution approchée de problèmes d’optimisation combinatoire: application au problème de coloration de graphe. Ph.D. Thesis, Université des Sciences et Technologies de Lille, France (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bouziri, H., Talbi, EG. & Mellouli, K. A Cooperative Search Method for the k-Coloring Problem. J Math Model Algor 7, 125–142 (2008). https://doi.org/10.1007/s10852-008-9081-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10852-008-9081-1