[go: up one dir, main page]

Skip to main content
Log in

Stochastic methods for Dirichlet problems

  • Research Article
  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

Using an equivalent expression for solutions of second order Dirichlet problems in terms of Ito type stochastic differential equations, we develop a numerical solution method for Dirichlet boundary value problems. It is possible with this idea to solve for solution values of a partial differential equation at isolated points without having to construct any kind of mesh and without knowing approximations for the solution at any other points. Our method is similar to a recently published approach, but differs primarily in the handling of the boundary. Some numerical examples are presented, applying these techniques to model Laplace and Poisson equations on the unit disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M. and Stegun I.A.: Handbook of Mathematical Functions, Dover Pub. Inc., New York, 1968.

    Google Scholar 

  2. Bonami A., Karoui N., Roynette B. and Reinhard, H.: Processus de diffusion associé a un opérateur elliptique dégénré, Ann. Inst. Henri Poincaré, B 7 (1971), 31–80.

    MathSciNet  MATH  Google Scholar 

  3. Buchmann F. M. and Petersen W. P.: Solving Dirichlet problems numerically using the Feynman–Kac representation, BIT Numer. Math. 43(3) (2003), 519–540.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cohn P. M.: Algebra, Vol. 1. London, Wiley, 1974.

    MATH  Google Scholar 

  5. Dynkin E. B.: Morkov Processes, Vol. I & II (translated into English from the original Russian), Berlin Heidelberg New York, Springer, 1965.

    Google Scholar 

  6. Fleming W. H. and Rishel R. W.: Deterministic and Stochastic Optimal Control, Berlin Heidelberg New York, Springer, 1975.

    MATH  Google Scholar 

  7. Freidlin M. I.: On the factorization of nonnegative matrices, Theory Prob. Appl 13 (1968), 354–358.

    Article  MathSciNet  Google Scholar 

  8. Friedman A.: Partial Differential Equationsof Parabolic Type, Englewood Cliffs, New Jersey, Prentice Hall 1964.

    Google Scholar 

  9. Friedman A.: Partial Differential Equations, New York, Holt, 1969.

    MATH  Google Scholar 

  10. Friedman A.: Stochastic Differential Equationsand Applications, Vol. 1. New York, Academic 1975.

    Google Scholar 

  11. Friedman A.: Stochastic Differential Equationsand Applications, Vol. 2. New York, Academic 1976.

    Google Scholar 

  12. Gilbarg D. and Trudinger N. S.: Elliptic Partial Differential Equationsof Second Order, Berlin, Heidelberg, New York, Springer, 1977.

    Google Scholar 

  13. Jost J.: Partial Differential Equations, Berlin, Heidelberg, New York, Springer, 2002

    MATH  Google Scholar 

  14. Kac M.: On distributions of certain Wiener functionals, Trans. Am. Math. Soc 65 (1949), 1–13

    Article  MATH  Google Scholar 

  15. Kac M.: On some connections between probability theory and differential and integral equations, Proc. 2nd Berkeley Symp. Math. Stat. & Prob. 65 (1951), 189–215.

    Google Scholar 

  16. Karoui N. and Reinhard H.: Processus de Diffusion dans \(\mathbb{R}^{n} \), Lect. Notes in Math., No. 321, Berlin, Heidelberg, New York, Springer,(1973), pp. 95–116.

    Google Scholar 

  17. Kato T.: Perturbation Theory for Linear Operators, Berlin, Heidelberg, New York, Springer, 1995.

    MATH  Google Scholar 

  18. Kuo H. H.: Differential and stochastic equations in abstract Wiener space, J. Funct. Anal. 12 (1973), 246–256.

    Article  MATH  Google Scholar 

  19. Kushner H. J.: Probabilistic methods for finite difference approximations to degenerate elliptic and parabolic equations with neuman and dirichlet boundary conditions, J. Math. Anal. Appl. 53 (1976), 644–668.

    Article  MATH  MathSciNet  Google Scholar 

  20. Kushner H. J.: Probability Methods for Approximations in Stochastic Control and for Elliptic Equations, New York, Academic, 1977

    MATH  Google Scholar 

  21. Maruyama G.: Continuous Markov processes and stochastic equations, Rend. Circ. Mat. Palermo 4 (1955), 48–90.

    Article  MATH  MathSciNet  Google Scholar 

  22. McShane E. J.: Stochastic Calculus and Stochastic Models, New York, Academic, 1974.

    MATH  Google Scholar 

  23. Phillips R. S. and Sarason L.: Elliptic–parabolic equations of the second order, J. Math. Mech. 17 (1968), 891–918.

    MathSciNet  Google Scholar 

  24. Rosenblatt M.: On a class of Markov processes, Trans. Am. Math. Soc. 71 (1951), 120–135.

    Article  MATH  MathSciNet  Google Scholar 

  25. Soldevilla M. M. Cuestiones Notables en Ecuaciones Diferenciales Estocásticas y su Relación con Ecuaciones en Derivadas Parciales, Tesina de Licenciatura, Facultad de Ciencias, Universidad de Zaragoza, 1979.

  26. Stroock D. W. and Varadhan S. R. S.: On degenerate elliptic–parabolic operators of second order and their associated diffusions, Commun. Pure Appl. Math 25 (1972), 651–713.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vigo-Aguiar.

Additional information

Visiting Professor, Universidad de Salamanca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigo-Aguiar, J., Ardanuy-Albajar, R. & Wade, B.A. Stochastic methods for Dirichlet problems. J Math Model Algor 4, 317–330 (2005). https://doi.org/10.1007/s10852-005-9007-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-005-9007-0

Key words

Navigation