[go: up one dir, main page]

Skip to main content
Log in

Poisson Skeleton Revisited: a New Mathematical Perspective

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper is concerned with the computation of the skeleton of a shape Ω included in ℝ2. We show some connections between the Euclidean distance function d to ∂Ω and the solution u of the Poisson problem Δu(x)=−1 if x is in Ω and u(x)=0 if x is on ∂Ω. This enables us to propose a new and fast algorithm to compute an approximation of the skeleton of ∂Ω. We illustrate the approach with some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alessandrini, G., Magnanini, R.: The index of isolated critical points and solutions of elliptic equations in the plane. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 19(4), 567–589 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L.: Transport equation and Cauchy problem for non-smooth vector fields. In: Dacorogna, B., Marcellini, P. (eds.) Lecture Note in Mathematics, vol. 1927, pp. 2–41 (2008)

    Google Scholar 

  3. Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: shape at its absolute scale. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2188–2203 (2008)

    Article  Google Scholar 

  4. Blum, H.: A transformation for extracting new descriptors of shape. In: Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, vol. 80, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  5. Blum, H.: Biological shape and visual science (part i). J. Theor. Biol. 38, 205–287 (1973)

    Article  Google Scholar 

  6. Choi, H., Choi, S., Moon, H.: Mathematical theory of medical axis transform. Pac. J. Math. 181(1), 57–88 (1997)

    Article  MathSciNet  Google Scholar 

  7. Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  8. Dimitrov, P.: Flux Invariants for Shape. Ph.D. Thesis, McGill University, Department of Computer Science, Montral (2003)

  9. Dimitrov, P.J., Damon, J.N., Siddiqi, K.: Flux invariants for shape. In: CVPR (2003)

    Google Scholar 

  10. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. Am. Math. Soc., Providence (1991)

    Google Scholar 

  11. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Princeton Mathematical Series, vol. 28. Springer, Berlin (1970)

    Google Scholar 

  12. Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the Poisson equation. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1991–2005 (2006)

    Article  Google Scholar 

  13. Sabry Hassouna, M., Farag, A.: Variational curve skeletons using gradient vector flow. IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009). http://www.computer.org/csdl/trans/tp/2009/12/ttp2009122257-abs.html

  14. Hubbard, J., West, B.: Equations Différentielles et Système Dynamique. Enseignements des Mathématiques. Cassini, Paris (1999)

    Google Scholar 

  15. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Differential Equation. Springer, New York (1988)

    Google Scholar 

  16. Kawhohl, B.: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (2002)

    Google Scholar 

  17. Kimmel, R., Shaked, D., Kiryati, N.: Skeletonization via distance maps and level sets. Comput. Vis. Image Underst. 62(3), 382–391 (1995)

    Article  Google Scholar 

  18. Leyton, M.: Symmetry-curvature duality. Comput. Vis. Graph. Image Process. 38, 327–341 (1987)

    Article  MATH  Google Scholar 

  19. Makar-Limanov, L.G.: Solution of Dirichlet’s problem for the equation Δu=−1 in a convex region. Math. Notes Acad. Sci. USSR 9, 52–53 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  20. Matheron, G.: Examples of topological properties of skeletons. In: Serra (ed.) Image Analysis and Mathematical Morphology, vol. 2. Academic Press, London (1988)

    Google Scholar 

  21. Meyer, F.: Skeletons in digital spaces. In: Serra (ed.) Image Analysis and Mathematical Morphology, vol. 2. Academic Press, London (1988)

    Google Scholar 

  22. Modica, L., Mortola, S.: Il limite nella gamma-convergence di una familiglia di funzionali ellittici. Boll. Unione Mat. Ital. 14A, 526–529 (1977)

    MathSciNet  Google Scholar 

  23. Pasquignon, D.: Computation of skeleton by partial differential equation. In: ICIP (1995)

    Google Scholar 

  24. Di Perna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  25. Riahi, L.: Dirichlet Green functions for parabolic operators with singular lower-order terms. JIPAM. J. Inequal. Pure Appl. Math. 8(2) (2007). http://www.emis.de/journals/JIPAM/article866.html

  26. Serra, J.: Image Analysis Mathematical Morphology vol. 2. Harcourt Brace, New York (1988)

    Google Scholar 

  27. Shah, J.: Gray skeletons and segmentation of shapes. Comput. Vis. Image Underst. 99(1), 96–109 (2005)

    Article  Google Scholar 

  28. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton-Jacobi skeletons. Int. J. Comput. Vis. 48(3), 215–231 (2002)

    Article  MATH  Google Scholar 

  29. Tari, S., Shah, J., Pien, H.: Extraction of shape skeletons from greyscale images. Comput. Vis. Image Underst. 66, 133–146 (1997)

    Article  Google Scholar 

  30. Tari, S., Genctav, M.: From a modified Ambrosio-Tortorelli to a randomized part hierarchy tree. In: SSVM, pp. 267–278 (2011)

    Google Scholar 

  31. Tek, H., Kimia, B.B.: Symmetry maps of free-form curve segments via wave propagation. In: ICCV, pp. 362–369 (1999)

    Google Scholar 

  32. You, X., Tang, Y.Y., Zhang, W., Sun, L.: Skeletonization of character based on wavelet transform. In: CAIP. LNCS, vol. 2756, pp. 140–148 (2003)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their usefuls comments and remarks that helped to improve the paper. We also would like to thank Professor El Maati Ouhabaz for having pointed out to us reference [25].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Franois Aujol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert, G., Aujol, JF. Poisson Skeleton Revisited: a New Mathematical Perspective. J Math Imaging Vis 48, 149–159 (2014). https://doi.org/10.1007/s10851-012-0404-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0404-5

Keywords

Navigation