Abstract
Motion estimation in sequences with transparencies is an important problem in robotics and medical imaging applications. In this work we propose a variational approach for estimating multi-valued velocity fields in transparent sequences. Starting from existing local motion estimators, we derive a variational model for integrating in space and time such a local information in order to obtain a robust estimation of the multi-valued velocity field. With this approach, we can indeed estimate multi-valued velocity fields which are not necessarily piecewise constant on a layer—each layer can evolve according to a non-parametric optical flow. We show how our approach outperforms existing methods; and we illustrate its capabilities on challenging experiments on both synthetic and real sequences.
Similar content being viewed by others
References
Toro, J., Owens, F., Medina, R.: Using known motion fields for image separation in transparency. Pattern Recognit. Lett. 24, 597–605 (2003)
Oppenheim, A.V.: Superposition in a class of nonlinear systems. In: Proceedings of IEEE International Convention, New York, USA, pp. 171–177 (1964)
Guenther, R.D.: Modern Optics. Wiley, New York (1990)
Qian, N., Andersen, R., Adelson, E.: Transparent motion perception as detection of unbalanced motion signals. III. Modeling. J. Neurosci. 14(12), 7381–7392 (1994)
Ramirez-Manzanares, A., Rivera, M., Kornprobst, P., Lauze, F.: A variational approach for multi-valued velocity field estimation in transparent sequences. In: Proceedings of International Conference on Scale Space and Variational Methods in Computer Vision, Ischia, Italy. LNCS, vol. 4485, pp. 227–238 (2007)
Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optical flow computations with theoretically justified warping. Int. J. Comput. Vis. 67(2), 141–158 (2006)
Nir, T., Bruckstein, A., Kimmel, R.: Over-parameterized variational optical flow. Int. J. Comput. Vis. 76(2), 205–216 (2008)
Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)
Baker, S., Scharstein, D., Lewis, J.P., Roth, K., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: Proceeding of the 11th International Conference on Computer Vision, IEEE, Rio de Janeiro, Brazil (2007)
Bergen, J.R., Burt, P.J., Hingorani, R., Peleg, S.: Computing two motions from three frames. In: Third International Conference on Computer Vision, Osaka, Japan, pp. 27–32 (1990)
Burt, P.J., Hingorani, R., Kolczynski, R.J.: Mechanisms for isolating component patterns in the sequential analysis of multiple motion. In: Proceedings of IEEE Workshop on Visual Motion, Princeton, NJ, pp. 187–193 (1991)
Irani, M., Peleg, S.: Motion analysis for image enhancement: resolution, occlusion, and transparency. J. Vis. Commun. Image Represent. 4(4), 324–335 (1993)
Irani, M., Rousso, B., Peleg, S.: Computing occluding and transparent motions. Int. J. Comput. Vis. 12(1), 5–16 (1994)
Shizawa, M., Mase, K.: Simultaneous multiple optical flow estimation. In: Proceedings of 10th International Conference on Pattern Recognition, pp. 274–278 (1990)
Shizawa, M., Mase, K.: Principle of superposition: a common computational framework for analysis of multiple motion. In: Proceedings of IEEE Workshop on Visual Motion, pp. 164–172 (1991)
Shizawa, M., Mase, K.: A unified computational theory for motion transparency and motion boundaries based on eigenergy analysis. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, IEEE, Lahaina, Hawai, pp. 289–295 (1991)
Förstner, W.: A feature based corresponding algorithm for image matching. Int. Arch. Photogramm. Remote Sens. 26, 150–166 (1986)
Bigun, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 775–790 (1991). Report LiTH-ISY-I-0828 1986 and Report LiTH-ISY-I-1148 1990, both at Computer Vision Laboratory, Linköping University, Sweden
Mota, C., Stuke, I., Aach, T., Barth, E.: Divide-and-Conquer strategies for estimating multiple transparent motions. In: Proceedings of 1st International Workshop on Complex Motion, Schloss Reisensburg, Germany. LNCS, vol. 3417, pp. 66–78 (2005)
Mühlich, M., Aach, T.: A theory of multiple orientation estimation. In: Proceedings of the European Conference on Computer Vision. LNCS, vol. 3952, pp. 69–82 (2006)
Vernon, D.: Decoupling Fourier components of dynamic image sequences: a theory of signal separation, image segmentation and optical flow estimation. In: European Conference on Computer Vision, vol. 2, pp. 69–85 (1998)
Zhou, W., Kambhamettu, C.: Separation of reflection by Fourier decoupling. In: Asian Conference on Computer Vision, Jeju Island, Korea (2004)
Liu, H.C., Hong, T.H., Herman, M., Chellappa, R.: Spatio-temporal filters for transparent motion segmentation. In: Proceedings of the International Conference on Image Processing, Washington, USA, pp. 464–468 (1995)
Darrell, T., Simoncelli, E.: Separation of transparent motion into layers using velocity-tuned mechanisms. Tech. Rep. 244, MIT Media Laboratory Vision and Modeling Group (1993)
Stuke, I., Aach, T., Barth, E., Mota, C.: Estimation of multiple motions by block matching. In: Proceedings in 4th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 358–362 (2003)
Stuke, I., Aach, T., Barth, E., Mota, C.: Multiple-motion-estimation by block matching using MRF. Int. J. Comput. Inform. Sci. 26, 141–152 (2004)
Auvray, V., Bouthemy, P., Lienard, J.: Motion estimation in x-ray image sequence with bi-distributed transparency. In: Proceedings of IEEE International Conference on Image Processing, Atlanta, USA, pp. 1057–1060 (2006)
Fitzpatrick, J.M.: The existence of geometrical density-image transformations corresponding to object motion. Comput. Vis. Graph. Image Process. 44(2), 155–174 (1988)
Pingault, M., Bruno, E., Pellerin, D.: A robust multiscale b-spline function decomposition for estimating motion transparency. IEEE Trans. Image Process. 12(11), 1416–1426 (2003)
Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. CVGIP, Image Underst. 63(1), 75–104 (1996)
Jepson, A., Black, M.J.: Mixture models for optical flow computation. In: Proceedings of Intl. Conf. on Computer Vision and Pattern Recognition, pp. 760–761 (1993)
Ju, S.X., Black, M.J., Jepson, A.D.: Skin and bones: Multi-layer, locally affine, optical flow and regularization with transparency. In: Proceedings of Intl. Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 307–314 (1996)
Black, M.J., Fleet, D.J., Yacoob, Y.: Robustly estimating changes in image appearance. Comput. Vis. Image Underst. 78, 8–31 (2000)
Jojic, N., Frey, B.: Learning flexible sprites in video layers. In: Proceedings in IEEE Conf. on Computer Vision and Pattern Recognition, pp. 199–206 (2001)
Weiss, Y., Adelson, E.H.: A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, IEEE, San Francisco, CA, pp. 321–326 (1996)
Rivera, M., Ocegueda, O., Marroquin, J.L.: Entropy-controlled quadratic Markov measure field models for efficient image segmentation. IEEE Trans. Image Process. 16(12), 3047–3057 (2007)
Ramirez-Manzanares, A., Rivera, M., Kornprobst, P., Lauze, F.: Multi-valued motion fields estimation for transparent sequences with a variational approach. Tech. Rep. RR-5920, INRIA (Also, Reporte Técnico CIMAT, (CC)I-06-12) (2006)
Szeliski, R., Avidan, S., Anandan, P.: Layer extraction from multiple images containing reflections and transparency. In: Proceedings in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 246–253 (2000)
Nicolescu, M., Medioni, G.: Layered 4d representation and voting for grouping from motion. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 492–501 (2003)
Sarel, B., Irani, M.: Separating transparent layers of repetitive dynamic behaviors. In: Proceedings of the Tenth International Conference on Computer Vision, vol. 1, pp. 26–32. IEEE Computer Society, Beijing (2005)
Oo, T., Kawasaki, H., Ohsawa, Y., Ikeuchi, K.: The separation of reflected and transparent layers from real-world image sequences. Mach. Vis. Appl. 18(1), 17–24 (2007)
Black, M.J., Rangarajan, P.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vis. 19(1), 57–91 (1996)
Ramirez-Manzanares, A., Rivera, M.: Brain nerve boundless estimation by restoring and filtering intra-voxel information in DT-MRI. In: Proceedings of Second Workshop on Variational and Level Sets Methods, pp. 71–80 (2003)
Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)
Blake, A., Zisserman, A.: Visual Reconstruction, 1st edn. MIT Press, Cambridge (1987)
Grossberg, S., Mingolla, E., Viswanathan, L.: Neural dynamics of motion integration and segmentation within and across apertures. Vis. Res. 41, 2521–2553 (2001)
Braddick, O.: Local and global representations of velocity; transparency opponency and global direction perception. Perception 26, 995–1010 (1997)
Weiss, Y., Simoncelli, E., Adelson, E.: Motion illusions as optimal percepts. Nat. Neurosci. 5(6), 598–604 (2002)
Fleet, D.J., Weiss, Y.: Optical flow estimation. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Mathematical Models for Computer Vision: The Handbook. Springer, Berlin (2005)
Bayerl, P., Neumann, H.: A fast biologically inspired algorithm for recurrent motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 246–260 (2007)
Sarel, B., Irani, M.: Separating transparent layers through layer information exchange. In: Pajdla, T., Matas, J. (eds.) Proceedings of the 8th European Conference on Computer Vision, pp. 328–341. Springer, Berlin (2004)
Ramirez-Manzanares, A., Rivera, M.: Basis tensor decomposition for restoring intra-voxel structure and stochastic walks for inferring brain connectivity in DT-MRI. Int. J. Comput. Vis. 69(1), 77–92 (2006)
Field, D.J.: Scale-invariance and self-similar ‘wavelet’ transforms: an analysis of natural scenes and mammalian visual systems. In: O.U. Press (ed.) Wavelets, Fractals and Fourier Transforms: New Developments and New Applications. Oxford University Press, London (1993)
Field, D.J.: What is the goal of sensory coding? Neural Comput. 6, 559–601 (1994)
Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis. Res. 37, 3311–3325 (1997)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 1st edn. Springer, New York (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ramírez-Manzanares, A., Rivera, M., Kornprobst, P. et al. Variational Multi-Valued Velocity Field Estimation for Transparent Sequences. J Math Imaging Vis 40, 285–304 (2011). https://doi.org/10.1007/s10851-011-0260-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-011-0260-8