Abstract
This paper presents two new higher order diffusion models for removing noise from images. The models employ fractional derivatives and are modifications of an existing fourth order partial differential equation (PDE) model which was developed by You and Kaveh as a generalization of the well-known second order Perona-Malik equation. The modifications serve to cure the ill-posedness of the You-Kaveh model without sacrificing performance. Also proposed in this paper is a simple smoothing technique which can be used in numerical experiments to improve denoising and reduce processing time. Numerical experiments are shown for comparison.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge-detection by non-linear diffusion II. SIAM J. Numer. Anal. 29(3), 845–866 (1992)
Amann, H.: Time-delayed Perona-Malik problems. Acta Math. Univ. Comen. LXXVI, 15–38 (2007)
Bai, J., Feng, X.C.: Fractional order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007)
Belahmidi, A.: Equations aux dérivées partielles appliquées à la restoration et à l’agrandissement des images. Ph.D. Thesis. Université Paris-Dauphine, Paris (2003)
Belahmidi, A., Chambolle, A.: Time-delay regularization of anisotropic diffusion and image processing. Modél. Math. Anal. Numér. 39(2), 231–251 (2005)
Bertozzi, A., Greer, J.: Low-curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Commun. Pure Appl. Math. LVII, 0764–0790 (2004)
Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)
Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge-detection by non-linear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)
Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000) (electronic). doi:10.1137/S1064827598344169
Chan, T.F., Esedoglu, S., Park, F.E.: A fourth order dual method for staircase reduction in texture extraction and image restoration problems. UCLA CAM report 05-28 (April 2005)
Chen, Y., Bose, P.: On the incorporation of time-delay regularization into curvature-based diffusion. J. Math. Imaging Vis. 14(2), 149–164 (2001)
Cottet, G.H., Ayyadi, M.E.: A Volterra type model for image processing. IEEE Trans. Image Process. 7, 292–303 (1998)
Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale-space properties of fractional high order linear filtering. In: Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459. Springer, Berlin (2005)
Didas, S., Weickert, J., Burgeth, B.: Stability and local feature enhancement of higher order nonlinear diffusion filtering. Pattern Recognit. 3663, 451–458 (2005)
Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vis. 35(3), 208–226 (2009). doi:10.1007/s10851-009-0166-x
Guidotti, P.: A new nonlocal nonlinear diffusion of image processing. J. Differ. Equ. 246(12), 4731–4742 (2009)
Guidotti, P.: A new well-posed nonlinear nonlocal diffusion. Nonlinear Anal. 72, 4625–4637 (2010)
Guidotti, P., Lambers, J.: Two new nonlinear nonlocal diffusions for noise reduction. J. Math. Imaging Vis. 33(1), 25–37 (2009)
Guidotti, P., Longo, K.: Well-posedness for a class of fourth order diffusions for image processing. Nonlinear Differ. Equ. Appl. (to appear)
Hajiaboli, M.: A self-governing hybrid model for noise removal. In: Advances in Image and Video Technology. Lecture Notes in Computer Science, vol. 5414. Springer, Berlin (2008)
Hajiaboli, M.: An anisotropic fourth-order partial differential equation for noise removal. In: Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 5567. Springer, Berlin (2009)
Kichenassamy, S.: The Perona-Malik paradox. SIAM J. Appl. Math. 57(5), 1328–1342 (1997)
Lambers, J.V.: Enhancement of Krylov subspace spectral methods by block Lanczos iteration. Electron. Trans. Numer. Anal. 31, 86–109 (2008)
Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Represent. 18(4), 322–330 (2007)
Lysaker, M., Lundervold, A., Tai, X.: Noise removal using fourth order differential equations with applications to medical magnetic resonance images in space-time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)
Mathieu, B., Melchior, P., Outstaloup, A., Ceyral, C.: Fractional differentiation for edge detection. Signal Process. 83, 2421–2432 (2003)
Nitzberg, M., Shiota, T.: Nonlinear image smoothing with edge and corner enhancement. Tech. Report 90-2. Harvard University, Cambridge, MA (1990)
Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14, 826–833 (1992)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 161–192 (1990)
Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proceedings of the SIGGRAPH 1999 Annual Conference on Computer Graphics, August 8–13, 1999, Los Angeles, CA, USA, Siggraph Annual Conference Series, pp. 83–90. ACM Siggraph, Addison-Wesley, Longman, Harlow (1999)
Wei, G.: Generalized Perona-Malik equation for image restoration. IEEE Signal Process. Lett. 6(7), 165–167 (1999)
Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner Verlag, Stuttgart (1998)
Witkin, A.P.: Scale-space filtering. In: Proc. IJCAI, Karlsruhe, pp. 1021–1019 (1983)
You, Y., Kaveh, M.: Fourth order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000)
You, Y., Xu, W., Tannenbaum, A., Kaveh, M.: Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. Image Process. 5(11), 1539–1553 (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors of this research were supported by the National Science Foundation under award number DMS-0712875.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Guidotti, P., Longo, K. Two Enhanced Fourth Order Diffusion Models for Image Denoising. J Math Imaging Vis 40, 188–198 (2011). https://doi.org/10.1007/s10851-010-0256-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-010-0256-9