[go: up one dir, main page]

Skip to main content
Log in

Automatic feature constructing from vibration signals for machining state monitoring

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Machining state monitoring is an important subject for intelligent manufacturing. Feature construction is accepted to be the most critical procedure for a signal-based monitoring system and has attracted a lot of research interest. The traditional manual constructing way is skill intensive and the performance cannot be guaranteed. This paper presented an automatic feature construction method which can reveal the inherent relationship between the input vibration signals and the output machining states, including idling moving, stable cutting and chatter, using a reasonable and mathematical way. Firstly a large signal set is carefully prepared by a series of machining experiments followed by some necessary preprocessing. And then, a deep belief network is trained on the signal set to automatically construct features using the two step training procedure, namely unsupervised greedily layer-wise pertaining and supervised fine-tuning. The automatically extracted features can exactly reveal the connection between the vibration signal and the machining states. Using the automatic extracted features, even a linear classifier can easily achieve nearly 100% modeling accuracy and wonderful generalization performance, besides good repeatability precision on a large well prepared signal set. For the actual online application, voting strategy is introduced to smooth the predicted states and make the final state identification to ensure the detection reliability by taking consideration of the machining history. Experiments proved the proposed method to be efficient in protecting the workpiece from serious chatter damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abellan-Nebot, J. V., & Subirón, F. R. (2010). A review of machining monitoring systems based on artificial intelligence process models. International Journal of Advanced Manufacturing Technology, 47(1–4), 237–257.

    Article  Google Scholar 

  • Altintas, Y. (2012). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge: Cambridge University Press.

    Google Scholar 

  • Aydin, I., Karakose, M., & Akin, E. (2015). Combined intelligent methods based on wireless sensor networks for condition monitoring and fault diagnosis. Journal of Intelligent Manufacturing, 26(4), 717–729.

    Article  Google Scholar 

  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1), 1–127.

    Article  Google Scholar 

  • Bengio, Y. (2013). Deep learning of representations: Looking forward. In A. H. Dediu, C. Martín-Vide, R. Mitkov, & B. Truthe (Eds.), Statistical language and speech processing. First international conference, SLSP 2013, Tarragona, Spain, July 29–31, 2013. Proceedings (pp. 1–37). Springer Berlin Heidelberg.

  • Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

    Article  Google Scholar 

  • Cho, S. Y., Binsaeid, S., & Asfour, S. (2010). Design of multisensor fusion-based tool condition monitoring system in end milling. International Journal of Advanced Manufacturing Technology, 46(5–8), 681–694.

    Article  Google Scholar 

  • Fu, Y., Zhang, Y., Zhou, H., Li, D., Liu, H., Qiao, H., et al. (2016). Timely online chatter detection in end milling process. Mechanical Systems and Signal Processing, 75, 668–688.

    Article  Google Scholar 

  • Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A., Mirza, M., Hamner, B., et al. (2014). Challenges in representation learning: A report on three machine learning contests. Neural Networks.

  • Hinton, G. (2010). A practical guide to training restricted Boltzmann machines. Momentum, 9(1), 926.

    Google Scholar 

  • Hinton, G., Deng, L., Yu, D., Dahl, G. E., Jaitly, N., Mohamed, A. R., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.

    Article  Google Scholar 

  • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771–1800.

    Article  Google Scholar 

  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    Article  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1), 106.

    Article  Google Scholar 

  • Jolliffe, I. (2002). Principal component analysis. Wiley Online Library.

  • Kuljanic, E., Sortino, M., & Totis, G. (2008). Multisensor approaches for chatter detection in milling. Journal of Sound and Vibration, 312(4–5), 672–693.

    Article  Google Scholar 

  • Kuljanic, E., Totis, G., & Sortino, M. (2009). Development of an intelligent multisensor chatter detection system in milling. Mechanical Systems and Signal Processing, 23(5), 1704–1718.

    Article  Google Scholar 

  • Lamraoui, M., Thomas, M., El Badaoui, M., & Girardin, E. (2014). Indicators for monitoring chatter in milling based on instantaneous angular speeds. Mechanical Systems and Signal Processing, 44(1–2), 72–85.

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  • Litak, G., Sen, A. K., & Syta, A. (2009). Intermittent and chaotic vibrations in a regenerative cutting process. Chaos Solitons & Fractals, 41(4), 2115–2122.

    Article  Google Scholar 

  • Liu, H. Q., Chen, Q. H., Li, B., Mao, X. Y., Mao, K. M., & Peng, F. Y. (2011). On-line chatter detection using servo motor current signal in turning. Science China Technological Sciences, 54(12), 3119–3129.

    Article  Google Scholar 

  • Mohamed, A. R., Dahl, G. E., & Hinton, G. (2012). Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1), 14–22.

    Article  Google Scholar 

  • Quintana, G., Ciurana, J., Altintas, Y., & Weck, M. (2011). Chatter in machining processes: A review. International Journal of Machine Tools & Manufacture, 51(5), 363–376.

  • Schmitz, T. L. (2003). Chatter recognition by a statistical evaluation of the synchronously sampled audio signal. Journal of Sound and Vibration, 262(3), 721–730.

    Article  Google Scholar 

  • Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 16(4), 487–546.

    Article  Google Scholar 

  • Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for tool condition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65(1–4), 371–393.

    Article  Google Scholar 

  • Siddhpura, M., & Paurobally, R. (2012). A review of chatter vibration research in turning. International Journal of Machine Tools & Manufacture, 61, 27–47.

    Article  Google Scholar 

  • Tangjitsitcharoen, S. (2011). Advance in detection system to improve the stability and capability of CNC turning process. Journal of Intelligent Manufacturing, 22(6), 843–852.

    Article  Google Scholar 

  • Tangjitsitcharoen, S., & Pongsathornwiwat, N. (2013). Development of chatter detection in milling processes. International Journal of Advanced Manufacturing Technology, 65(5–8), 919–927.

    Article  Google Scholar 

  • Tangjitsitcharoen, S., Saksri, T., & Ratanakuakangwan, S. (2015). Advance in chatter detection in ball end milling process by utilizing wavelet transform. Journal of Intelligent Manufacturing, 26(3), 485–499.

    Article  Google Scholar 

  • Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals-Manufacturing Technology, 59(2), 717–739.

    Article  Google Scholar 

  • Yao, Z. H., Mei, D. Q., & Chen, Z. C. (2010). On-line chatter detection and identification based on wavelet and support vector machine. Journal of Materials Processing Technology, 210(5), 713–719.

    Article  Google Scholar 

  • Zhang, Z. Y., Wang, Y., & Wang, K. S. (2013). Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 24(6), 1213–1227.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the National Program on Key Basic Research Project (Grant No. 2013CB035805), National Natural Science Foundation Council of China (Grant Nos. 51675199, 51635006), Fundamental Research Funds for the Central Universities (Grant No. 2016YXZD059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Zhang, Y., Gao, H. et al. Automatic feature constructing from vibration signals for machining state monitoring. J Intell Manuf 30, 995–1008 (2019). https://doi.org/10.1007/s10845-017-1302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-017-1302-x

Keywords

Navigation