Abstract
This paper discusses the multi-product multi-level capacitated lotsizing and scheduling problem with sequence-dependent setups. An exact formulation of the problem is provided as a mixed-integer program which is impractical to solve in reasonable computing time for non-small instances. To solve non-small instances of the problem, MIP-based heuristics are provided. To test the accuracy of heuristics, two lower bounds are developed and compared against the optimal solution. The trade-offs between schedule quality and computational time of heuristics are also provided.
Similar content being viewed by others
References
Almada-Lobo B., Klabjan D., Carravilla M.A., Oliveira J. (2007) Single machine multi-product capacitated lot sizing with sequence-dependent setups. International Journal of Production Research 45(20): 4873–4894. doi:10.1080/00207540601094465
Araujo S.A., Arenales M.N., Clark A.R. (2007) Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. Journal of Heuristics 13(4): 337–358. doi:10.1007/s10732-007-9011-9
Araujo S.A., Arenales M.N., Clark A.R. (2008) Lot sizing and furnace scheduling in small foundries. Computers & Operations Research 35(3): 916–932. doi:10.1016/j.cor.2006.05.010
Beraldi P., Ghiani G., Grieco A., Guerriero E. (2008) Rolling-horizon and fix-and-relax heuristics for the parallel machine lot-sizing and scheduling problem with sequence-dependent set-up costs. Computers & Operations Research, 35(11): 3644–3656. doi:10.1016/j.cor.2007.04.003
Clark A.R. (2003) Optimization approximations for capacity constrained material requirements planning. International Journal of Production Economics 84(2): 115–131. doi:10.1016/S0925-5273(02)00400-0
Clark A.R., Clark S.J. (2000) Rolling-horizon lot-sizing when setup times are sequence-dependent. International Journal of Production Research 38(10): 2287–2308. doi:10.1080/00207540050028106
Dillenberger C., Escudero L.F., Wollensak A., Zhang W. (1994) On practical resource allocation for production planning and scheduling with period overlapping setups. European Journal of Operational Research 75(2): 275–286. doi:10.1016/0377-2217(94)90074-4
Dillenberger, C., Wollensak, A., & Zhang, W. (1992). On practical resource allocation for production planning and scheduling with different setup products, Draft paper. Germany: German Manufacturing Technology Centre, IBM, Sindelfigen.
Defersha F.M., Chen M. (2008) A linear programming embedded genetic algorithm for an integrated cell formation and lot sizing considering product quality. European Journal of Operational Research 187(1): 46–69. doi:10.1016/j.ejor.2007.02.040
Drexl A., Kimms A. (1997) Lot sizing and scheduling, survey and extensions. European Journal of Operational Research 99(2): 221–235. doi:10.1016/S0377-2217(97)00030-1
Eppen G.D., Martin R.K. (1987) Solving multi-item capacitated lot-sizing problems using variable redefinition. Operations Research 35(6): 832–848
Fandel G., Stammen-Hegene C. (2006) Simultaneous lot sizing and scheduling for multi-product multi-level production. International Journal of Production Economics 104(2): 308–316. doi:10.1016/j.ijpe.2005.04.011
Fleischmann B., Meyr H. (1997) The general lotsizing and scheduling problem. OR-Spektrum 19(2): 11–21
Gupta D., Magnusson T. (2005) The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Computers & Operations Research 32(4): 727–747. doi:10.1016/j.cor.2003.08.014
Jans R., Degraeve Z. (2007) Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches. European Journal of Operational Research 177(3): 1851–1875. doi:10.1016/j.ejor.2005.12.008
Karimi B., Fatemi Ghomi S.M.T., Wilson J.M. (2003) The capacitated lot sizing problem: A review of models and algorithms. Omega 31(5): 365–378. doi:10.1016/S0305-0483(03)00059-8
Kimms, A. (1993). Multi-level, single-machine lot sizing and scheduling(with initial inventory). Manuskripte aus den Instituten fûr Betriebswirtschaftslehre der universität Kiel, No.329, Kiel.
Kimms A. (1996) Multi-level, single-machine lotsizing and scheduling (with initial inventory). European Journal of Operational Research 89(1): 86–99. doi:10.1016/S0377-2217(96)90056-9
Kimms, A., & Drexl, A. (1996). Some insights into proportional lotsizing and scheduling. Manuskripte aus den Instituten der universität Kiel, No.406, Kiel.
Merece C., Fonton G. (2003) MIP-based heuristics for capacitated lotsizing problems. International Journal of Production Economics 85(1): 97–111. doi:10.1016/S0925-5273(03)00090-2
Tempelmeier H., Buschkuhl L. (2008) Dynamic multi-machine lotsizing and sequencing with simultaneous scheduling of a common setup resource. International Journal of Production Economics 113(1): 401–402. doi:10.1016/j/ijpe.2007.10.001
Wagner H.M., Whithin T.M. (1958) Dynamic version of the economic lot size model. Management Science 5: 89–96
Wolsey L.A. (1998) Integer Programming. Wiley, New York
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mohammadi, M., Fatemi Ghomi, S.M.T., Karimi, B. et al. Rolling-horizon and fix-and-relax heuristics for the multi-product multi-level capacitated lotsizing problem with sequence-dependent setups. J Intell Manuf 21, 501–510 (2010). https://doi.org/10.1007/s10845-008-0207-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-008-0207-0