Abstract
In the today’s market, there is a wide range of failed IT projects in specialized small and medium-sized companies because of poor control in the gap between the business and its vision. In other words, acquired goods are not being sold, a scenario which is very common in tourism retail companies. These companies buy a number of travel packages from big companies and due to lack of demand for these packages, they expire, becoming an expense, rather than an investment. To solve this problem, we propose to detect the problems that limit a company by re-engineering the processes, enabling the implementation of a business architecture based on sentimental analysis, allowing small and medium-sized tourism enterprises (SMEs) to make better decisions and analyze the information that most possess, without knowing how to exploit it. In addition, a case study was applied using a real company, comparing data before and after using the proposed model in order to validate feasibility of the applied model.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alfaro, C., Cano-Montero, J., Gómez, J., Moguerza, J.M., Ortega, F. (2016). A multi-stage method for content classification and opinion mining on weblog comments. Annals of Operations Research, 236(1), 197–213. https://doi.org/10.1007/s10479-013-1449-6.
Baucom, E., Sanjari, A., Liu, X., Chen, M. (2013). Mirroring the real world in social media. In Proceedings of the 2013 International Workshop on Mining Unstructured Big Data Using Natural Language Processing - UnstructureNLP ’13. https://doi.org/10.1145/2513549.2513559 (pp. 61–68). New York: ACM Press.
Brandt, T., Bendler, J., Neumann, D. (2017). Social media analytics and value creation in urban smart tourism ecosystems. Information and Management, 54 (6), 703–713. https://doi.org/10.1016/j.im.2017.01.004.
Chauhan, R., & Kaur, H. (2013). Predictive analytics and data mining. Business Intelligence, 359–374. https://doi.org/10.4018/978-1-4666-9562-7.ch019.
Dubin, R. (2008). Theory building. Free Press. Retrieved from https://books.google.com.pe/books?id=a0NqAAAAMAAJ.
Eckerson, W.W. (2006). Predictive Analytics. Extending the Value of Your Data Warehousing Investment.TDWI BEST PRACTICES REPORT. Retrieved from http://www.sas.com/events/cm/174390/assets/102892_0107.pdf.
Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M. (2016). Quantifying controversy in social media. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. https://doi.org/10.1145/2835776.2835792(pp. 33–42). New York: ACM.
Harris, T. (2010). Cloud Computing Services – A comparison. Retrieved from http://www.thbs.com/downloads/Comparison-of-Cloud-computing-services.pdf.
Höpken, W., Fuchs, M., Keil, D., Lexhagen, M. (2015). Business intelligence for cross-process knowledge extraction at tourism destinations. Information Technology and Tourism, 15(2), 101–130. https://doi.org/10.1007/s40558-015-0023-2.
Huang, L., Luo, Q., Zou, C. (2013). A framework of new rural e-government and the related information resources integration. International Journal of u- and e- Service, Science and Technology, 6(6), 83–96. https://doi.org/10.14257/ijunesst.2013.6.6.09.
IDC. (2016). Worldwide Semiannual Big Data and Analytics Spending Guide. Retrieved from https://www.idc.com/getdoc.jsp?containerId=prUS41826116.
Lu, Y., Deng, Z., Wang, B. (2007). Tourism and travel electronic commerce in china. Electrical marketing, 17(2), 101–112. https://doi.org/10.1080/10196780701295974.
Luck, R. (2013). Articulating (mis)understanding across design discipline interfaces at a design team meeting. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 27(02), 155–166. https://doi.org/10.1017/S089006041300005X.
Merida, C., Rios, R., Kobayashi, A., Raymundo, C. (2017). Modelo arquitectnico de informacin para una plataforma de Big Data para el Sector Turstico. In Proceedings of the Dcima Sexta Conferencia Iberoamericana en Sistemas, Cibernetica e Informtica (CISCI 2017), Decimo Cuarto Simposium Iberoamericano en Educacion, Cibernetica e Informatica, SIECI 2017 - Memorias, pp. 321-328.
Polastri, G. (2015). Google Perú: Solo el 15% de pymes peruanas utilizan herramientas digitales en su negocio. Gestión. Retrieved from https://gestion.pe/economia/google-peru-15-pymes-peruanas-utilizan-herramientas-digitales-negocio-88525.
Shao, H., Zhang, Y., Li, W. (2017). Extraction and analysis of city’s tourism districts based on social media data. Computers, Environment and Urban Systems, 65, 66–78. https://doi.org/10.1016/j.compenvurbsys.2017.04.010.
Sikeridis, D., Papapanagiotou, I., Rimal, B.P., Devetsikiotis, M. (2017). A Comparative Taxonomy and Survey of Public Cloud Infrastructure Vendors, 1–20. Retrieved from arXiv:1710.01476.
Yan, W. (2014). Research on tourism E-Commerce based on web data mining technology. Applied Mechanics and Materials, 543–547(Iea), 3663–3666. https://doi.org/10.4028/www.scientific.net/AMM.543-547.3663.
Zapata, G., Murga, J., Raymundo, C., Alvarez, J., Dominguez, F. (2017). Predictive model based on sentiment analysis for peruvian SMEs in the sustainable tourist sector. In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (pp. 232–240). SCITEPRESS - Science and Technology Publications. https://doi.org/10.5220/0006583302320240.
Zeng, Z.Y., & Ye, X.Y. (2013). Research on Jiangxi Tourism E-Commerce platform construction. Advanced Materials Research, 734–737, 2990–2993. https://doi.org/10.4028/www.scientific.net/AMR.734-737.2990.
Zhang, X.M., & Xu, C. (2012). A semantic E-Tourism framework based on Cloud-Computing. Applied Mechanics and Materials, 197, 661–668. https://doi.org/10.4028/www.scientific.net/AMM.197.661.
Acknowledgments
This work has been partially funded by the following projects of the Spanish Ministry of Science, Innovation and Universities GROMA (MTM2015-63710-P), MODAS-IN (reference: RTI2018-094269-B-I00), PPI (RTC-2015-3580-7) and UNIKO (RTC-2015-3521-7), and the “methaodos.org” research group at URJC.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zapata, G., Murga, J., Raymundo, C. et al. Business information architecture for successful project implementation based on sentiment analysis in the tourist sector. J Intell Inf Syst 53, 563–585 (2019). https://doi.org/10.1007/s10844-019-00564-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10844-019-00564-x