[go: up one dir, main page]

Skip to main content
Log in

Democratization in a passive dendritic tree: an analytical investigation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

One way to achieve amplification of distal synaptic inputs on a dendritic tree is to scale the amplitude and/or duration of the synaptic conductance with its distance from the soma. This is an example of what is often referred to as “dendritic democracy”. Although well studied experimentally, to date this phenomenon has not been thoroughly explored from a mathematical perspective. In this paper we adopt a passive model of a dendritic tree with distributed excitatory synaptic conductances and analyze a number of key measures of democracy. In particular, via moment methods we derive laws for the transport, from synapse to soma, of strength, characteristic time, and dispersion. These laws lead immediately to synaptic scalings that overcome attenuation with distance. We follow this with a Neumann approximation of Green’s representation that readily produces the synaptic scaling that democratizes the peak somatic voltage response. Results are obtained for both idealized geometries and for the more realistic geometry of a rat CA1 pyramidal cell. For each measure of democratization we produce and contrast the synaptic scaling associated with treating the synapse as either a conductance change or a current injection. We find that our respective scalings agree up to a critical distance from the soma and we reveal how this critical distance decreases with decreasing branch radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abbott, L. F., Fahri, E., & Gutmann, S. (1991). The path integral for dendritic trees. Biological Cybernetics, 66, 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Agmon-Snir, H. (1995). A novel theoretical approach to the analysis of dendritic transients. Biophysical Journal, 69(5), 1633–1656.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, P., Silfvenius, H., Sundberg, S. H., & Sveen, O. (1980) A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea-pig hippocampal slices in vitro. Journal of Physiology, 307, 273–299.

    PubMed  CAS  Google Scholar 

  • Andrasfalvy, B. K., & Magee, J. C. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. Journal of Neuroscience, 21, 9151–9159.

    PubMed  CAS  Google Scholar 

  • Bressloff, P., & Coombes, S. (1997). Physics of the extended neuron. International Journal of Modern Physics B, 11, 2343–2392.

    Article  Google Scholar 

  • Burke, W. (1957). Spontaneous potentials in slow muscle fibres of the frog. Journal of Physiology, 135(3), 511–21.

    PubMed  CAS  Google Scholar 

  • Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book. Cambridge: Cambridge University Press.

    Google Scholar 

  • Coombes, S., Timofeeva, Y., Svensson, C.-M., Lord, G. J., Josić, K., Cox, S. J., et al. (2007). Branching dendrites with resonant membrane: a “sum-over-trips” approach. Biological Cybernetics, 97, 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Cuntz, H., Borst, A., & Segev, I. (2007). Optimization principles of dendritic structure. Theoretical Biology and Medical Modelling, 4, 21.

    Article  PubMed  Google Scholar 

  • De Schutter, E., & Bower, J. M. (1994). Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proceedings of the National Academy of Sciences of the United States of America, 91, 4736–4740.

    Article  PubMed  Google Scholar 

  • Fatt, P., & Katz, B. (1951). An analysis of the end-plate potential recorded with an intracellular electrode. Journal of Physiology, 115(3), 320–70.

    PubMed  CAS  Google Scholar 

  • Golding, N., Mickus, T., Katz, Y., Kath, W., & Spruston, N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. The Journal of Physiology, 568(1), 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Häusser, M. (2001). Synaptic function: Dendritic democracy. Current Biology, 11, R10–R12.

    Article  PubMed  Google Scholar 

  • Iansek, R., & Redman, S. J. (1973). The amplitude, time course and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. Journal of Physiology, 234, 665–688.

    PubMed  CAS  Google Scholar 

  • Jack, J., Noble, D., & Tsien, R. (1975). Electric current flow in excitable cells. Oxford: Oxford University Press.

    Google Scholar 

  • Jack, J. J., Redman, S. J., & Wong, K. (1981). The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. Journal of Physiology, 321, 65–96.

    PubMed  CAS  Google Scholar 

  • Koch, C. (1999). Biophysics of computation: Information processing in single neurons. Oxford: Oxford University Press.

    Google Scholar 

  • London, M., & Segev, I. (2001). Synaptic scaling in vitro and in vivo. Nature Neuroscience, 4, 853–854.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J., & Cook, E. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895–903.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J. C. (2000). Dendritic integration of excitatory synaptic input. Nature Reviews Neuroscience, 1, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Migliore, M., Ferrante, M., & Ascoli, G. A. (2005). Signal propagation in oblique dendrites of CA1 pyramidal cells. Journal of Neurophysiology, 94, 4145–4155.

    Article  PubMed  Google Scholar 

  • Nicholson, D., Trana, R., Katz, Y., Kath, W., Spruston, N., & Geinisman, Y. (2006a). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron, 50(3), 431–442.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, D. A., Trana, R., Katz, Y., Kath, W. L., Spruston, N., & Geinisman, Y. (2006b). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron, 50(3), 431–442.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input–output relations. In R. F. Reiss (Ed.), Neural theory and modeling. Stanford: Stanford University Press.

    Google Scholar 

  • Rall, W., & Agmon-Snir, H. (1998). Cable theory for dendritic neurons. In C. Koch & I. Segev (Eds.), Methods in Neuronal Modeling (2nd ed., pp. 27–92). Cambridge, MA: MIT Press.

    Google Scholar 

  • Rumsey, C. C., & Abbott, L. F. (2004). Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. Journal of Neurophysiology, 91, 2273–2280.

    Article  PubMed  Google Scholar 

  • Rumsey, C. C., & Abbott, L. F. (2006). Synaptic democracy in active dendrites. Journal of Neurophysiology, 96(5), 2307–2318.

    Article  PubMed  Google Scholar 

  • Timofeeva, Y., Lord, G. J., & Coombes, S. (2006a). Dendritic cable with active spines: A modeling study in the spike-diffuse spike framework. Neurocomputing, 69, 1058–1061.

    Article  Google Scholar 

  • Timofeeva, Y., Lord, G. J., & Coombes, S. (2006b). Spatio-temporal filtering properties of a dendritic cable with active spines. Journal of Computational Neuroscience, 21, 293–306.

    Article  PubMed  Google Scholar 

  • Tuckwell, H. C. (1988a). Introduction to theoretical neuro biology: Linear cable theory and dendritic structure, vol. I of Cambridge studies in mathematical biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tuckwell, H. C. (1988b). Introduction to theoretical neurobiology: Nonlinear and stochastic theories, vol. II of Cambridge studies in mathematical biology. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgements

The work in this paper is supported through Engineering and Physical Sciences Research Council (EPSRC) Grant No. GR/S60914/01. S Coombes would also like to acknowledge ongoing support from the EPSRC through the award of an Advanced Research Fellowship, Grant No. GR/R76219. K Josić was supported by NSF grant DMS-0604429, and an Advanced Research Program/Advanced Technology Program grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Timofeeva.

Additional information

Action Editor: David Terman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timofeeva, Y., Cox, S.J., Coombes, S. et al. Democratization in a passive dendritic tree: an analytical investigation. J Comput Neurosci 25, 228–244 (2008). https://doi.org/10.1007/s10827-008-0075-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0075-9

Keywords